Deficiency indices of a~one-term symmetric differential operator of even order degenerate in the interior of an interval
Sbornik. Mathematics, Tome 196 (2005) no. 5, pp. 673-702

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $a(x)\in C^\infty[-h,h]$, $h>0$, be a real function such that $a(x)\ne 0$ for $x\in[-h,h]$. Consider the differential expression $s_p[f]=(-1)^n(x^pa(x)f^{(n)})^{(n)}$ of arbitrary order $2n\geqslant 2$, which depends on the positive integer $p$ and is degenerate for $x=0$. Let $H_p$ be the real symmetric operator in $L^2(-h,h)$ corresponding to $s_p[f]$ and let $\operatorname{Def}H_p$ be its deficiency index in the upper (or lower) half-plane. The proof of the formula $\operatorname{Def}H_p=2n+p$, $1\leqslant p\leqslant n$, is presented. It complements the formulae $\operatorname{Def}H_p=2n$ for $p\geqslant 2n$ and $\operatorname{Def}H_p=4n-p$ for $p=2n-2,2n-1$ obtained by the same author before.
@article{SM_2005_196_5_a2,
     author = {Yu. B. Orochko},
     title = {Deficiency indices of a~one-term symmetric differential operator of even order degenerate in the interior of an interval},
     journal = {Sbornik. Mathematics},
     pages = {673--702},
     publisher = {mathdoc},
     volume = {196},
     number = {5},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_5_a2/}
}
TY  - JOUR
AU  - Yu. B. Orochko
TI  - Deficiency indices of a~one-term symmetric differential operator of even order degenerate in the interior of an interval
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 673
EP  - 702
VL  - 196
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_5_a2/
LA  - en
ID  - SM_2005_196_5_a2
ER  - 
%0 Journal Article
%A Yu. B. Orochko
%T Deficiency indices of a~one-term symmetric differential operator of even order degenerate in the interior of an interval
%J Sbornik. Mathematics
%D 2005
%P 673-702
%V 196
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_5_a2/
%G en
%F SM_2005_196_5_a2
Yu. B. Orochko. Deficiency indices of a~one-term symmetric differential operator of even order degenerate in the interior of an interval. Sbornik. Mathematics, Tome 196 (2005) no. 5, pp. 673-702. http://geodesic.mathdoc.fr/item/SM_2005_196_5_a2/