Deficiency indices of a~one-term symmetric differential operator of even order degenerate in the interior of an interval
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 196 (2005) no. 5, pp. 673-702
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $a(x)\in C^\infty[-h,h]$, $h>0$, be a real function such that $a(x)\ne 0$ for $x\in[-h,h]$. Consider the differential expression $s_p[f]=(-1)^n(x^pa(x)f^{(n)})^{(n)}$ of arbitrary order $2n\geqslant 2$, which depends on the positive integer $p$ and is degenerate for $x=0$. Let $H_p$ be the real symmetric operator in $L^2(-h,h)$ corresponding to $s_p[f]$ and let $\operatorname{Def}H_p$ be its deficiency index in the upper (or lower) half-plane. The proof of the formula $\operatorname{Def}H_p=2n+p$,
$1\leqslant p\leqslant n$, is presented. It complements the formulae $\operatorname{Def}H_p=2n$ for $p\geqslant 2n$ and $\operatorname{Def}H_p=4n-p$ for $p=2n-2,2n-1$ obtained by the same author before.
			
            
            
            
          
        
      @article{SM_2005_196_5_a2,
     author = {Yu. B. Orochko},
     title = {Deficiency indices of a~one-term symmetric differential operator of even order degenerate in the interior of an interval},
     journal = {Sbornik. Mathematics},
     pages = {673--702},
     publisher = {mathdoc},
     volume = {196},
     number = {5},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_5_a2/}
}
                      
                      
                    TY - JOUR AU - Yu. B. Orochko TI - Deficiency indices of a~one-term symmetric differential operator of even order degenerate in the interior of an interval JO - Sbornik. Mathematics PY - 2005 SP - 673 EP - 702 VL - 196 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2005_196_5_a2/ LA - en ID - SM_2005_196_5_a2 ER -
%0 Journal Article %A Yu. B. Orochko %T Deficiency indices of a~one-term symmetric differential operator of even order degenerate in the interior of an interval %J Sbornik. Mathematics %D 2005 %P 673-702 %V 196 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2005_196_5_a2/ %G en %F SM_2005_196_5_a2
Yu. B. Orochko. Deficiency indices of a~one-term symmetric differential operator of even order degenerate in the interior of an interval. Sbornik. Mathematics, Tome 196 (2005) no. 5, pp. 673-702. http://geodesic.mathdoc.fr/item/SM_2005_196_5_a2/
