Steinberg conformal algebras
Sbornik. Mathematics, Tome 196 (2005) no. 5, pp. 649-671 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Steinberg conformal algebra is defined as an abstract algebra by a system of generators and relations between the generators. It is proved that a Steinberg conformal algebra is the universal central extension of the corresponding conformal Lie algebra; the kernel of this extension is calculated.
@article{SM_2005_196_5_a1,
     author = {A. V. Mikhalev and I. A. Pinchuk},
     title = {Steinberg conformal algebras},
     journal = {Sbornik. Mathematics},
     pages = {649--671},
     year = {2005},
     volume = {196},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_5_a1/}
}
TY  - JOUR
AU  - A. V. Mikhalev
AU  - I. A. Pinchuk
TI  - Steinberg conformal algebras
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 649
EP  - 671
VL  - 196
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_5_a1/
LA  - en
ID  - SM_2005_196_5_a1
ER  - 
%0 Journal Article
%A A. V. Mikhalev
%A I. A. Pinchuk
%T Steinberg conformal algebras
%J Sbornik. Mathematics
%D 2005
%P 649-671
%V 196
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2005_196_5_a1/
%G en
%F SM_2005_196_5_a1
A. V. Mikhalev; I. A. Pinchuk. Steinberg conformal algebras. Sbornik. Mathematics, Tome 196 (2005) no. 5, pp. 649-671. http://geodesic.mathdoc.fr/item/SM_2005_196_5_a1/

[1] Milnor Dzh., Vvedenie v algebraicheskuyu K-teoriyu, Mir, M., 1974 | MR | Zbl

[2] Steinberg R., “Générateurs, rélations et revêtements de groupes algébriques”, Colloques sur la theorie des groupes algébriques, Centre Belge Rech Math., Bruxelles, 1962, 113–127 | MR | Zbl

[3] Bloch S., “The dilogarithm and extensions of Lie algebras”, Algebraic $K$-theory, Proc. Conf. (Evanston, 1980), Lecture Notes in Math., 854, Springer, Berlin, 1981, 1–23 | MR

[4] Kassel C., “Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra”, J. Pure Appl. Algebra, 34 (1984), 265–275 | DOI | MR | Zbl

[5] Kassel C., Loday J.-L., “Extensions centrales d'algèbres de Lie”, Ann. Inst. Fourier (Grenoble), 32 (1982), 119–142 | MR | Zbl

[6] Yun Gao, “On the Steinberg Lie algebras $\mathrm{St}_2(R)$”, Comm. Algebra, 21:10 (1993), 3691–3706 | DOI | MR | Zbl

[7] Yun Gao, “Steinberg Lie algebras and skew-dihedral homology”, J. Algebra, 179 (1996), 261–304 | DOI | MR | Zbl

[8] Mikhalëv A. V., Pinchuk I. A., “Universalnoe tsentralnoe rasshirenie odnoi osoboi superalgebry Li s nevyrozhdennoi formoi Killinga”, Universalnaya algebra i ee prilozheniya, Peremena, Volgograd, 2000, 201–221

[9] Mikhalëv A. V., Pinchuk I. A., “Universalnye tsentralnye rasshireniya superalgebr Li”, Formalnye stepennye ryady i algebraicheskaya kombinatorika, Tezisy 12-i Mezhdunarodnoi konferentsii, Maks Press, M., 2000, 49–50

[10] Mikhalëv A. V., Pinchuk I. A., “Universalnye tsentralnye rasshireniya superalgebr Li”, Trudy sem. im. I. G. Petrovskogo, no. 22, MGU, M., 2002, 261–282 | MR

[11] Mikhalev A. V., Pinchuk I. A., “Universal central extensions of the matrix Lie superalgebras $\mathrm{sl}(m,n,A)$”, Contemp. Math., 264 (2000), 111–125 | MR | Zbl

[12] Bokut L. A., Fong Y., Ke W.-F., “Gröbner–Shirshov bases and composition lemma for associative conformal algebras: an example”, Contemp. Math., 264 (2000), 63–90 | MR | Zbl

[13] Kac V., Vertex algebras for beginners, Univ. Lecture Ser., 10, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[14] Roitman M., “On free conformal and vertex algebras”, J. Algebra, 217 (1999), 496–527 | DOI | MR | Zbl

[15] Zelmanov E., “Conformal algebras”, The concise handbook of algebra, Kluwer Acad. Publ., Dordrecht, 2002, 326–330