Impact of the shape of functions on the orders of piecewise polynomial and rational approximation
Sbornik. Mathematics, Tome 196 (2005) no. 5, pp. 623-648 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Delta^s_+$ be the set of functions $x\colon I\to\mathbb R$ on a finite interval $I$ such that the divided differences $[x;t_0,\dots,t_s]$ of order $s\in\mathbb N$ of these functions are non-negative for all systems of $s+1$ distinct points $t_0,\dots,t_s\in I$. Let $\Sigma_{r,n}=\{\sigma_{r,n}\}$ be the set of piecewise polynomial splines $\sigma_{r,n}$ of order $r$ with $n-1$ free knots, and $R_n=\{\rho_n\}$ the set of rational functions $\rho_n=\widehat\pi_n/\check\pi_n$, where $\widehat\pi_n$ and $\check\pi_n$ are polynomials of order $n$. For the classes $\Delta^s_+B_p:=\Delta^s_+\cap B_p$, where $B_p$ is the unit ball in $L_p$, the precise orders $$ E(\Delta^s_+B_p,\Sigma_{r,n})_{L_q} \asymp n^{-{\min\{r,s\}}}\quad \text{and}\quad E(\Delta^s_+B_p,R_n)_{L_q}\asymp n^{-s} $$ of the best approximations in the $L_q$ metrics are found for $1\leqslant q.
@article{SM_2005_196_5_a0,
     author = {V. N. Konovalov},
     title = {Impact of the shape of functions on the orders of piecewise polynomial and rational approximation},
     journal = {Sbornik. Mathematics},
     pages = {623--648},
     year = {2005},
     volume = {196},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_5_a0/}
}
TY  - JOUR
AU  - V. N. Konovalov
TI  - Impact of the shape of functions on the orders of piecewise polynomial and rational approximation
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 623
EP  - 648
VL  - 196
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_5_a0/
LA  - en
ID  - SM_2005_196_5_a0
ER  - 
%0 Journal Article
%A V. N. Konovalov
%T Impact of the shape of functions on the orders of piecewise polynomial and rational approximation
%J Sbornik. Mathematics
%D 2005
%P 623-648
%V 196
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2005_196_5_a0/
%G en
%F SM_2005_196_5_a0
V. N. Konovalov. Impact of the shape of functions on the orders of piecewise polynomial and rational approximation. Sbornik. Mathematics, Tome 196 (2005) no. 5, pp. 623-648. http://geodesic.mathdoc.fr/item/SM_2005_196_5_a0/

[1] Bullen P. S., “A criterion for $n$-convexity”, Pacific J. Math., 36 (1971), 81–98 | MR | Zbl

[2] Roberts A. W., Varberg D. E., Convex functions, Academic Press, New York, 1973 | MR | Zbl

[3] Pečarić J. E., Proschan F., Tong Y. L., Convex functions, partial orderings, and statistical applications, Math. Sci. Engrg., 187, Academic Press, Boston, 1992 | MR

[4] Bulanov A. P., “O poryadke priblizheniya vypuklykh funktsii ratsionalnymi funktsiyami”, Izv. AN SSSR. Ser. matem., 33:5 (1969), 1132–1148 | MR | Zbl

[5] Popov V. A., Petrushev P. P., “Tochnyi poryadok nailuchshego ravnomernogo priblizheniya vypuklykh funktsii ratsionalnymi funktsiyami”, Matem. sb., 103 (145):2 (6) (1977), 285–292 | Zbl

[6] Ivanov K. G., “Approximation of convex functions by means of polynomials and polygons”, Approximation and function spaces, Proceedings of Conference (Gdansk, 1979), Warszawa, 1981, 287–293 | MR | Zbl

[7] Hu Y., “Convexity preserving approximation by free knot splines”, SIAM J. Math. Anal., 22 (1991), 1183–1191 | DOI | MR | Zbl

[8] Konovalov V. N., Leviatan D., “Kolmogorov and linear widths of weighted Sobolev-type classes on a finite interval. II”, J. Approx. Theory, 113 (2001), 266–297 | DOI | MR | Zbl

[9] Konovalov V. N., Leviatan D., “Estimates on the approximation of 3-monotone functions by 3-monotone quadratic splines”, East J. Approx., 7 (2001), 333–349 | MR | Zbl

[10] Konovalov V. N., Leviatan D., “Shape-preserving widths of weighted Sobolev-type classes of positive, monotone and convex functions on a finite interval”, Constr. Approx., 19 (2003), 23–58 | DOI | MR | Zbl

[11] Konovalov V. N., Leviatan D., “Shape preserving widths of Sobolev-type classes of $s$-monotone functions on a finite interval”, Israel J. Math., 133 (2003), 239–268 | DOI | MR | Zbl

[12] Konovalov V. N., Leviatan D., “Free-knot splines approximation of $s$-monotone functions on a finite interval”, Adv. Comput. Math., 20 (2004), 347–366 | DOI | MR | Zbl

[13] Konovalov V. N., “Shape preserving widths of Kolmogorov-type of the classes of positive, monotone, and convex integrable functions”, East J. Approx., 10:1–2 (2004), 93–117 | MR | Zbl

[14] Konovalov V. N., “Formosokhranyayuschie poperechniki tipa Kolmogorova klassov $s$-monotonnykh integriruemykh funktsii”, Ukr. matem. zhurn., 55:7 (2004), 901–926 | MR

[15] Khardi G., Littlvud D., Polia G., Neravenstva, IL, M., 1948

[16] Pekarskii A. A., “Sootnosheniya mezhdu nailuchshimi ratsionalnymi i kusochno-polinomialnymi priblizheniyami”, Vestsi Akademii navuk BSSR. Ser. fiz.-matem. navuk, 1986, no. 5, 36–39 | MR | Zbl

[17] Petrushev P. P., “Relation between rational and spline approximation in $L_p$ metric”, J. Approx. Theory, 50 (1987), 141–159 | DOI | MR | Zbl

[18] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, MGU, M., 1976 | MR