The Laplace method for small deviations of Gaussian processes of Wiener type
Sbornik. Mathematics, Tome 196 (2005) no. 4, pp. 595-620

Voir la notice de l'article provenant de la source Math-Net.Ru

Results on the exact asymptotics of the probabilities $$ \mathsf P\biggl\{\,\int_0^1|\xi(t)|^p\,dt \le\varepsilon^p\biggr\},\qquad\varepsilon\to 0, $$ for $p>0$ are proved for two Gaussian processes $\xi(t)$: the Wiener process and the Brownian bridge. The method of study is the Laplace method in Banach spaces and the approach to the probabilities of small deviations based on the theory of large deviations for the occupation time. The calculations are carried out for the cases $p=1$ and $p=2$ as a result of solving the extremal problem for the action functional and studying the corresponding Schrödinger equations.
@article{SM_2005_196_4_a5,
     author = {V. R. Fatalov},
     title = {The {Laplace} method for small deviations of {Gaussian} processes of {Wiener} type},
     journal = {Sbornik. Mathematics},
     pages = {595--620},
     publisher = {mathdoc},
     volume = {196},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_4_a5/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - The Laplace method for small deviations of Gaussian processes of Wiener type
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 595
EP  - 620
VL  - 196
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_4_a5/
LA  - en
ID  - SM_2005_196_4_a5
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T The Laplace method for small deviations of Gaussian processes of Wiener type
%J Sbornik. Mathematics
%D 2005
%P 595-620
%V 196
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_4_a5/
%G en
%F SM_2005_196_4_a5
V. R. Fatalov. The Laplace method for small deviations of Gaussian processes of Wiener type. Sbornik. Mathematics, Tome 196 (2005) no. 4, pp. 595-620. http://geodesic.mathdoc.fr/item/SM_2005_196_4_a5/