The Laplace method for small deviations of Gaussian processes of Wiener type
Sbornik. Mathematics, Tome 196 (2005) no. 4, pp. 595-620 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Results on the exact asymptotics of the probabilities $$ \mathsf P\biggl\{\,\int_0^1|\xi(t)|^p\,dt \le\varepsilon^p\biggr\},\qquad\varepsilon\to 0, $$ for $p>0$ are proved for two Gaussian processes $\xi(t)$: the Wiener process and the Brownian bridge. The method of study is the Laplace method in Banach spaces and the approach to the probabilities of small deviations based on the theory of large deviations for the occupation time. The calculations are carried out for the cases $p=1$ and $p=2$ as a result of solving the extremal problem for the action functional and studying the corresponding Schrödinger equations.
@article{SM_2005_196_4_a5,
     author = {V. R. Fatalov},
     title = {The {Laplace} method for small deviations of {Gaussian} processes of {Wiener} type},
     journal = {Sbornik. Mathematics},
     pages = {595--620},
     year = {2005},
     volume = {196},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_4_a5/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - The Laplace method for small deviations of Gaussian processes of Wiener type
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 595
EP  - 620
VL  - 196
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_4_a5/
LA  - en
ID  - SM_2005_196_4_a5
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T The Laplace method for small deviations of Gaussian processes of Wiener type
%J Sbornik. Mathematics
%D 2005
%P 595-620
%V 196
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2005_196_4_a5/
%G en
%F SM_2005_196_4_a5
V. R. Fatalov. The Laplace method for small deviations of Gaussian processes of Wiener type. Sbornik. Mathematics, Tome 196 (2005) no. 4, pp. 595-620. http://geodesic.mathdoc.fr/item/SM_2005_196_4_a5/

[1] Sytaya G. N., “O nekotorykh asimptoticheskikh predstavleniyakh dlya gaussovskoi mery v gilbertovom prostranstve”, Teoriya sluch. protsessov, 2 (1974), 93–104

[2] Lifshits M. A., Gaussovskie sluchainye funktsii, TV i MS, Kiev, 1995

[3] Fatalov V. R., “Konstanty v asimptotikakh veroyatnostei malykh uklonenii dlya gaussovskikh protsessov i polei”, UMN, 58:4 (2003), 89–134 | MR | Zbl

[4] Li W. V., “Small ball probabilities for Gaussian Markov processes under the $L^p$-norm”, Stochastic Process. Appl., 92:1 (2001), 87–102 | DOI | MR | Zbl

[5] Lifshits M. A., Simon T., Small deviations for fractional stable processes, Preprint, no. 177, Univ. d'Évry Prépubl., Évry, 2003 | MR

[6] Piterbarg V. I., Fatalov V. R., “Metod Laplasa dlya veroyatnostnykh mer v banakhovykh prostranstvakh”, UMN, 50:6 (1995), 57–150 | MR | Zbl

[7] Dembo A., Zeitouni O., Large deviations techniques and applications, Springer-Verlag, New York, 1998 | MR | Zbl

[8] Fatalov V. R., “Asimptotiki veroyatnostei malykh uklonenii v $L^2$-norme dlya dvukh klassov gaussovskikh statsionarnykh protsessov”, Teoriya veroyatnostei i ee prim. (to appear)

[9] Donsker M. D., Varadhan S. R. S., “On laws of the iterated logarithm for local times”, Comm. Pure Appl. Math., 30 (1977), 707–753 | DOI | MR | Zbl

[10] Borovkov A. A., Mogulskii A. A., “O veroyatnostyakh malykh uklonenii dlya sluchainykh protsessov”, Trudy Instituta matematiki SO AN CCCP, 13, Nauka, Novosibirsk, 1989, 147–168 | MR

[11] Kusuoka S., Tamura Y., “Precise estimate for large deviation of Donsker–Varadhan type”, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math., 38 (1991), 533–565 | MR | Zbl

[12] Bolthausen E., “Laplace approximations for sums of independent random vectors. I, II”, Probab. Theory Related Fields, 72:2 (1986), 305–318 ; 76:2 (1987), 167–206 | DOI | MR | Zbl | DOI | MR | Zbl

[13] Fatalov V. R., “The Laplace method for computing exact asymptotics of distributions of integral statistics”, Math. Methods Statist., 8:4 (1999), 510–535 | MR | Zbl

[14] Fatalov V. R., “Bolshie ukloneniya gaussovskikh mer v prostranstvakh $l^p$ i $L^p$, $p\ge 2$”, Teoriya veroyatnostei i ee prim., 41:3 (1996), 682–689 | MR | Zbl

[15] Kats M., Neskolko veroyatnostnykh zadach fiziki i matematiki, Nauka, M., 1967 | Zbl

[16] Krein S. G. (red.), Funktsionalnyi analiz, Nauka, M., 1972 | MR | Zbl

[17] Khida T., Brounovskoe dvizhenie, Nauka, M., 1987 | MR | Zbl

[18] Borodin A. N., Salminen P., Spravochnik po brounovskomu dvizheniyu, Lan, S.-Pb., 2000 | Zbl

[19] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[20] Abramovits M., Stigan I. (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[21] Olver F., Asimptotiki i spetsialnye funktsii, Nauka, M., 1990 | MR | Zbl

[22] Yakovleva G. D., Tablitsy funktsii Eiri i ikh proizvodnykh, Nauka, M., 1969 | MR

[23] Rice S. O., “The integral of the absolute value of the pinned Wiener process – calculation of its probability density by numerical integration”, Ann. Probab., 10:1 (1982), 240–243 | DOI | MR | Zbl

[24] Takács L., “On the distribution of the integral of the absolute value of the Brownian motion”, Ann. Appl. Probab., 3 (1993), 186–197 | DOI | MR | Zbl

[25] Levi P., Stokhasticheskie protsessy i brounovskoe dvizhenie, Nauka, M., 1972 | MR

[26] Ikeda N., Vatanabe S., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986 | MR | Zbl

[27] Revuz D., Yor M., Continuous martingales and Brownian motion, Springer-Verlag, Berlin, 1999 | MR | Zbl

[28] Chzhun K., Uilyams R., Vvedenie v stokhasticheskoe integrirovanie, Mir, M., 1987 | MR

[29] Donsker M. D., Varadhan S. R. S., “Asymptotic evaluation of certain Wiener integrals for large time”, Functional integration and its applications, eds. A. M. Arthur, Oxford Univ. Press, Oxford, 1975, 15–33 | MR

[30] Donsker M. D., Varadhan S. R. S., “Asymptotic evaluation of certain Markov process expectations for large time. I, II, III, IV”, Comm. Pure Appl. Math., 28 (1975), 1–47 ; 28 (1975), 279–301 ; 29 (1976), 389–461 ; 36 (1983), 525–565 | MR | Zbl | DOI | Zbl | DOI | MR | Zbl

[31] Simon B., Functional integration and quantum physics, Academic Press, New York, 1979 | MR

[32] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[33] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[34] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1961 | MR

[35] Bolthausen E., Deuschel J.-D., Tamura Y., “Laplace approximations for large deviations of nonreversible Markov processes. The nondegenerate case”, Ann. Probab., 23:1 (1995), 236–267 | DOI | MR | Zbl

[36] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2003

[37] Venttsel A. D., Kurs teorii sluchainykh protsessov, Nauka–Fizmatlit, M., 1996 | MR | Zbl

[38] Fatalov V. R., “Asimptotiki bolshikh uklonenii gaussovskikh protsessov tipa vinerovskogo dlya $L^p$-funktsionalov, $p>0$, i gipergeometricheskaya funktsiya”, Matem. sb., 194:3 (2003), 61–82 | MR | Zbl

[39] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Dopolnitelnye glavy, Nauka, M., 1986 | MR