Non-existence of stable trajectories in non-autonomous perturbations of systems of Lorenz type
Sbornik. Mathematics, Tome 196 (2005) no. 4, pp. 561-594

Voir la notice de l'article provenant de la source Math-Net.Ru

Systems generalizing Lorenz's are considered in a bounded subdomain of $\mathbb R^3$. It is shown that under certain conditions of uniform hyperbolicity small non-autonomous perturbations do not lead to the formation of stable trajectories.
@article{SM_2005_196_4_a4,
     author = {E. A. Sataev},
     title = {Non-existence of stable trajectories in non-autonomous perturbations of systems of {Lorenz} type},
     journal = {Sbornik. Mathematics},
     pages = {561--594},
     publisher = {mathdoc},
     volume = {196},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_4_a4/}
}
TY  - JOUR
AU  - E. A. Sataev
TI  - Non-existence of stable trajectories in non-autonomous perturbations of systems of Lorenz type
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 561
EP  - 594
VL  - 196
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_4_a4/
LA  - en
ID  - SM_2005_196_4_a4
ER  - 
%0 Journal Article
%A E. A. Sataev
%T Non-existence of stable trajectories in non-autonomous perturbations of systems of Lorenz type
%J Sbornik. Mathematics
%D 2005
%P 561-594
%V 196
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_4_a4/
%G en
%F SM_2005_196_4_a4
E. A. Sataev. Non-existence of stable trajectories in non-autonomous perturbations of systems of Lorenz type. Sbornik. Mathematics, Tome 196 (2005) no. 4, pp. 561-594. http://geodesic.mathdoc.fr/item/SM_2005_196_4_a4/