Non-existence of stable trajectories in non-autonomous perturbations of systems of Lorenz type
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 196 (2005) no. 4, pp. 561-594
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Systems generalizing Lorenz's are considered in a bounded subdomain of $\mathbb R^3$. It is shown that under certain conditions of uniform hyperbolicity small non-autonomous perturbations do not lead to the formation of stable trajectories.
			
            
            
            
          
        
      @article{SM_2005_196_4_a4,
     author = {E. A. Sataev},
     title = {Non-existence of stable trajectories in non-autonomous perturbations of systems of {Lorenz} type},
     journal = {Sbornik. Mathematics},
     pages = {561--594},
     publisher = {mathdoc},
     volume = {196},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_4_a4/}
}
                      
                      
                    TY - JOUR AU - E. A. Sataev TI - Non-existence of stable trajectories in non-autonomous perturbations of systems of Lorenz type JO - Sbornik. Mathematics PY - 2005 SP - 561 EP - 594 VL - 196 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2005_196_4_a4/ LA - en ID - SM_2005_196_4_a4 ER -
E. A. Sataev. Non-existence of stable trajectories in non-autonomous perturbations of systems of Lorenz type. Sbornik. Mathematics, Tome 196 (2005) no. 4, pp. 561-594. http://geodesic.mathdoc.fr/item/SM_2005_196_4_a4/
