Homogenization of variational inequalities for obstacle problems
Sbornik. Mathematics, Tome 196 (2005) no. 4, pp. 541-560 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Results on the convergence of solutions of variational inequalities for obstacle problems are proved. The variational inequalities are defined by a non-linear monotone operator of the second order with periodic rapidly oscillating coefficients and a sequence of functions characterizing the obstacles. Two-scale and macroscale (homogenized) limiting variational inequalities are obtained. Derivation methods for such inequalities are presented. Connections between the limiting variational inequalities and two-scale and macroscale minimization problems are established in the case of potential operators.
@article{SM_2005_196_4_a3,
     author = {G. V. Sandrakov},
     title = {Homogenization of variational inequalities for obstacle problems},
     journal = {Sbornik. Mathematics},
     pages = {541--560},
     year = {2005},
     volume = {196},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_4_a3/}
}
TY  - JOUR
AU  - G. V. Sandrakov
TI  - Homogenization of variational inequalities for obstacle problems
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 541
EP  - 560
VL  - 196
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_4_a3/
LA  - en
ID  - SM_2005_196_4_a3
ER  - 
%0 Journal Article
%A G. V. Sandrakov
%T Homogenization of variational inequalities for obstacle problems
%J Sbornik. Mathematics
%D 2005
%P 541-560
%V 196
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2005_196_4_a3/
%G en
%F SM_2005_196_4_a3
G. V. Sandrakov. Homogenization of variational inequalities for obstacle problems. Sbornik. Mathematics, Tome 196 (2005) no. 4, pp. 541-560. http://geodesic.mathdoc.fr/item/SM_2005_196_4_a3/

[1] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[2] Kinderlerer D., Stampakkya G., Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M., 1983 | MR

[3] Nguetseng G., “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl

[4] Allaire G., “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23 (1992), 1482–1518 | DOI | MR | Zbl

[5] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[6] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[7] Amosov A. A., “O slaboi skhodimosti odnogo klassa bystroostsilliruyuschikh funktsii”, Matem. zametki, 62:1 (1997), 145–150 | MR | Zbl

[8] Sandrakov G. V., “Printsipy osredneniya uravnenii s bystroostsilliruyuschimi koeffitsientami”, Matem. sb., 180:12 (1989), 1643–1690

[9] Chiadò Piat V., Defranceschi A., “Homogenization of monotone operators”, Nonlinear Anal., 14 (1990), 717–732 | DOI | MR | Zbl

[10] Marcellini P., “Periodic solutions and homogenization of nonlinear variational problems”, Ann. Mat. Pura Appl. (4), 117 (1978), 139–152 | DOI | MR | Zbl

[11] Lions J.-L., Sanchez-Palencia E., “Écoulement d'un fluide viscoplastique de Bingham dans un milieu poreux”, J. Math. Pures Appl. (9), 60 (1981), 341–360 | MR | Zbl

[12] Bensoussan A., Lions J.-L., Papanicolau G., Asymptotic analysis for periodic structures, North-Holland, Amsterdam, 1978

[13] Lions J.-L., “Asymptotic behavior of variational inequalities with highly oscillating coefficients”, Lectures Notes in Math., 503, 1979, 30–55 | MR

[14] Carbone L., Colombini F., “On convergence of functionals with unilateral constraints”, J. Math. Pures Appl. (9), 59 (1980), 465–500 | MR | Zbl

[15] Attouch H., Picard C., “Variational inequalities with varying obstacles: the general form of the limit problem”, J. Funct. Anal., 50 (1983), 329–386 | DOI | MR

[16] Dal Maso G., Trebeschi P., “$\Gamma$-limit of periodic obstacles”, Acta Appl. Math., 65 (2001), 207–215 | DOI | MR | Zbl

[17] Kyado Piat V., Sandrakov G. V., “Osrednenie variatsionnykh neravenstv, voznikayuschikh v teorii uprugosti-plastichnosti”, Dokl. RAN, 394:5 (2004), 594–597 | MR

[18] Hedberg L. I., “Spectral synthesis in Sobolev spaces, and uniqueness of solutions of the Dirichlet problem”, Acta Math., 147 (1981), 237–264 | DOI | MR | Zbl

[19] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[20] Fedoryuk M. V., Asimptotika: integraly i ryady, Nauka, M., 1987 | MR