Construction of solutions in certain differential games with phase constraints
Sbornik. Mathematics, Tome 196 (2005) no. 4, pp. 513-539 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A differential approach-evasion game with fixed termination time is studied. It is assumed that the phase vector of the conflict-control system is subjected to constraints that form a closed set in the position space. The ideology of stable bridges is used for solving the problem. A method of convolution is proposed, which is used in several problems for constructing explicitly the stable absorption operator defining the stable bridges. A method of approximate construction of the maximal stable bridge in this game is suggested. The relations are written down that define a system of sets approximating the maximal stable bridge, and a control procedure with a guide is described, which can be used for obtaining an approximate solution of the approach problem.
@article{SM_2005_196_4_a2,
     author = {S. V. Grigor'eva and V. Yu. Pakhotinskikh and A. A. Uspenskii and V. N. Ushakov},
     title = {Construction of solutions in certain differential games with phase constraints},
     journal = {Sbornik. Mathematics},
     pages = {513--539},
     year = {2005},
     volume = {196},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_4_a2/}
}
TY  - JOUR
AU  - S. V. Grigor'eva
AU  - V. Yu. Pakhotinskikh
AU  - A. A. Uspenskii
AU  - V. N. Ushakov
TI  - Construction of solutions in certain differential games with phase constraints
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 513
EP  - 539
VL  - 196
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_4_a2/
LA  - en
ID  - SM_2005_196_4_a2
ER  - 
%0 Journal Article
%A S. V. Grigor'eva
%A V. Yu. Pakhotinskikh
%A A. A. Uspenskii
%A V. N. Ushakov
%T Construction of solutions in certain differential games with phase constraints
%J Sbornik. Mathematics
%D 2005
%P 513-539
%V 196
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2005_196_4_a2/
%G en
%F SM_2005_196_4_a2
S. V. Grigor'eva; V. Yu. Pakhotinskikh; A. A. Uspenskii; V. N. Ushakov. Construction of solutions in certain differential games with phase constraints. Sbornik. Mathematics, Tome 196 (2005) no. 4, pp. 513-539. http://geodesic.mathdoc.fr/item/SM_2005_196_4_a2/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR

[2] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970 | MR

[3] Krasovskii N. N., Subbotin A. I., “Smeshannye upravleniya v differentsialnoi igre”, Dokl. AN SSSR, 188:4 (1969), 745–747 | MR | Zbl

[4] Krasovskii N. N., “K zadache unifikatsii differentsialnykh igr”, Dokl. AN SSSR, 226:5 (1976), 1260–1263 | MR | Zbl

[5] Krasovskii N. N., “Unifikatsiya differentsialnykh igr”, Igrovye zadachi upravleniya, Trudy Instituta matematiki i mekhaniki, 24, UNTs AN SSSR, Sverdlovsk, 1977, 32–45 | MR

[6] Alekseichik M. I., “Dalneishaya formalizatsiya osnovnykh elementov antagonisticheskoi differentsialnoi igry”, Matematicheskii analiz i ego prilozheniya, 7, Rost. gos. un-t, Rostov-na-Donu, 1975, 191–199

[7] Tarasev A. M., Ushakov V. N., O postroenii stabilnykh mostov v minimaksnoi igre sblizheniya-ukloneniya, Dep. v VINITI No 2454-83, 1983

[8] Tarasev A. M., Ushakov V. N., Khripunov A. P., “Ob odnom vychislitelnom algoritme resheniya igrovykh zadach upravleniya”, Prikl. matem. i mekh., 51:2 (1987), 216–222 | MR | Zbl

[9] Kurzhanskii A. B., Filippova T. F., “Differentsialnye vklyucheniya s fazovymi ogranicheniyami. Metod vozmuschenii”, Trudy MIAN, 211, 1995, 304–315 | MR

[10] Filippova T. F., Zadachi o vyzhivaemosti dlya differentsialnykh vklyuchenii, Dis. ... dokt. fiz.-matem. nauk, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 1992

[11] Ushakov V. N., “K zadache postroeniya stabilnykh mostov v differentsialnoi igre sblizheniya-ukloneniya”, Izv. AN SSSR. Ser. tekhn. kibernetika, 1980, no. 4, 29–36 | MR | Zbl

[12] Ushakov V. N., Grigoreva S. V., “Konstruirovanie operatora stabilnogo pogloscheniya v differentsialnykh igrakh”, Izv. RAN. Ser. teoriya i sist. upravl., 1996, no. 4, 69–76 | MR | Zbl

[13] Grigorieva S. V., Ushakov V. N., “Use finite family of multivalued maps for constructing stable absorption operator”, Topol. Methods Nonlinear Anal., 15 (2000), 75–89 | MR | Zbl

[14] Patsko V. S., “Kvazilineinaya differentsialnaya igra kachestva vtorogo poryadka. I”, Zadachi dinamicheskogo programmirovaniya, UNTs AN SSSR, Sverdlovsk, 1981, 53–65 | MR

[15] Isakova E. A., Logunova G. V., Patsko V. S., “Postroenie stabilnykh mostov v lineinoi differentsialnoi igre s fiksirovannym momentom okonchaniya”, Algoritmy i programmy resheniya lineinykh differentsialnykh igr (materialy po matematicheskomu obespecheniyu EVM), UNTs AN SSSR, Sverdlovsk, 1984, 127–158

[16] Ushakov V. N., Protsedury postroeniya stabilnykh mostov v differentsialnykh igrakh, Dis. ... dokt. fiz.-matem. nauk, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 1991

[17] Tarasev A. M., Uspenskii A. A., Ushakov V. N., “Approksimatsionnye operatory i konechno-raznostnye skhemy dlya postroeniya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, Izv. RAN. Ser. tekhn. kibernetika, 1994, no. 3, 173–185 | MR | Zbl

[18] Grigorjeva S. V., Tarasjev A. M., Ushakov V. N., Uspenskii A. A., “Constructions of nonsmooth analysis in numerical methods for solving Hamilton–Jacobi equations”, Nova J. Math. Game Theory Algebra, 6:1 (1996), 27–43 | MR | Zbl

[19] Ushakov V. N., Khripunov A. P., “O priblizhennom postroenii reshenii v igrovykh zadachakh upravleniya”, Prikl. matem. i mekh., 61:3 (1997), 413–421 | MR | Zbl

[20] Zavarin A. B., Ushakov V. N., “O vydelenii yadra vyzhivaemosti dlya differentsialnogo vklyucheniya”, Prikl. matem. i mekh., 65:5 (2001), 831–842 | MR | Zbl

[21] Neznakhin A. A., Ushakov V. N., “Setochnyi metod priblizhennogo postroeniya yadra vyzhivaemosti dlya differentsialnogo vklyucheniya”, ZhVM i MF, 41:6 (2001), 895–908 | MR | Zbl