Global bifurcations on a Klein bottle. The general case
Sbornik. Mathematics, Tome 196 (2005) no. 4, pp. 465-483 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A one-parameter family of smooth vector fields in a space of a high dimension is considered such that for some critical parameter value the corresponding field has a saddle-node cycle (a periodic orbit). The case when the union of the cycle and its homoclinic orbits form a smooth Klein bottle is discussed. The problem consists in the description of the behaviour of the orbit set under the variation of the parameter.
@article{SM_2005_196_4_a0,
     author = {A. R. Borisyuk},
     title = {Global bifurcations on a {Klein} bottle. {The} general case},
     journal = {Sbornik. Mathematics},
     pages = {465--483},
     year = {2005},
     volume = {196},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_4_a0/}
}
TY  - JOUR
AU  - A. R. Borisyuk
TI  - Global bifurcations on a Klein bottle. The general case
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 465
EP  - 483
VL  - 196
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_4_a0/
LA  - en
ID  - SM_2005_196_4_a0
ER  - 
%0 Journal Article
%A A. R. Borisyuk
%T Global bifurcations on a Klein bottle. The general case
%J Sbornik. Mathematics
%D 2005
%P 465-483
%V 196
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2005_196_4_a0/
%G en
%F SM_2005_196_4_a0
A. R. Borisyuk. Global bifurcations on a Klein bottle. The general case. Sbornik. Mathematics, Tome 196 (2005) no. 4, pp. 465-483. http://geodesic.mathdoc.fr/item/SM_2005_196_4_a0/

[1] Ilyashenko Yu. S., Li Veigu., Nelokalnye bifurkatsii, MTsNMO CheRo, M., 1999 | MR

[2] Afraimovich V. S., Shilnikov L. P., “O nekotorykh globalnykh bifurkatsiyakh, svyazannykh s ischeznoveniem nepodvizhnoi tochki tipa sedlo-uzel”, Dokl. AN SSSR, 219:3 (1974), 1281–1285

[3] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Dinamicheskie sistemy, Itogi nauki i tekhniki. Sovr. problemy matem. Fundament. napravleniya, 5, VINITI, M., 1986, 5–218 | MR

[4] Hirsch V. W., Pugh C. C., Shub M., Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, New York, 1977 | MR | Zbl

[5] Fenichel N., “Persistence and smoothness of invariant manifolds for flows”, Indiana Univ. Math. J., 21 (1971), 193–226 | DOI | MR | Zbl

[6] Medvedev V. S., “O novom tipe bifurkatsii na mnogoobraziyakh”, Matem. sb., 113 (155):3 (1980), 487–492 | MR | Zbl

[7] Borisyuk A. R., “Globalnye bifurkatsii na butylke Kleina. Unimodalnyi sluchai”, Matem. zametki, 71:3 (2002), 348–363 | MR | Zbl

[8] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. I, Nauka, M., 1982 | MR