Global bifurcations on a Klein bottle. The general case
Sbornik. Mathematics, Tome 196 (2005) no. 4, pp. 465-483
Voir la notice de l'article provenant de la source Math-Net.Ru
A one-parameter family of smooth vector fields in a space of a high dimension is considered such that for some critical parameter value the corresponding field has a saddle-node cycle (a periodic orbit). The case when the union of the cycle and its homoclinic orbits form a smooth Klein bottle is discussed. The problem consists in the description of the behaviour of the orbit set under the variation of the parameter.
@article{SM_2005_196_4_a0,
author = {A. R. Borisyuk},
title = {Global bifurcations on a {Klein} bottle. {The} general case},
journal = {Sbornik. Mathematics},
pages = {465--483},
publisher = {mathdoc},
volume = {196},
number = {4},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_4_a0/}
}
A. R. Borisyuk. Global bifurcations on a Klein bottle. The general case. Sbornik. Mathematics, Tome 196 (2005) no. 4, pp. 465-483. http://geodesic.mathdoc.fr/item/SM_2005_196_4_a0/