Topological groups with finite von Neumann algebras of type I
Sbornik. Mathematics, Tome 196 (2005) no. 3, pp. 447-463 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A complete description of all topological groups admitting a separating system of continuous irreducible finite-dimensional unitary representations of uniformly bounded dimensions is obtained. A similar description is obtained for the formally more general class of all unitarily representable topological groups whose von Neumann algebra is a sum of homogeneous summands of finite and uniformly bounded degrees. Related results are obtained; in particular, a description is given of all locally bounded topological groups all of whose irreducible unitary representations are finite-dimensional.
@article{SM_2005_196_3_a5,
     author = {A. I. Shtern},
     title = {Topological groups with finite von {Neumann} algebras of {type~I}},
     journal = {Sbornik. Mathematics},
     pages = {447--463},
     year = {2005},
     volume = {196},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_3_a5/}
}
TY  - JOUR
AU  - A. I. Shtern
TI  - Topological groups with finite von Neumann algebras of type I
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 447
EP  - 463
VL  - 196
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_3_a5/
LA  - en
ID  - SM_2005_196_3_a5
ER  - 
%0 Journal Article
%A A. I. Shtern
%T Topological groups with finite von Neumann algebras of type I
%J Sbornik. Mathematics
%D 2005
%P 447-463
%V 196
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2005_196_3_a5/
%G en
%F SM_2005_196_3_a5
A. I. Shtern. Topological groups with finite von Neumann algebras of type I. Sbornik. Mathematics, Tome 196 (2005) no. 3, pp. 447-463. http://geodesic.mathdoc.fr/item/SM_2005_196_3_a5/

[1] Kaplansky I., “Groups with representations of bounded degree”, Proc. Amer. Math. Soc., 1 (1950), 449–463 | DOI | MR

[2] Amitsur S. A., “Groups with representations of bounded degree. II”, Illinois J. Math., 5 (1961), 198–205 | MR | Zbl

[3] Isaacs I. M., Passman D. S., “Groups with representations of bounded degree”, Canad. J. Math., 16 (1964), 299–309 | MR | Zbl

[4] Thoma E., “Über unitäre Darstellungen abzählbarer, diskreter Gruppen”, Math. Ann., 153 (1964), 111–138 | DOI | MR | Zbl

[5] Thoma E., “Eine Charakterisierung diskreter Gruppen vom Typ I”, Invent. Math., 6 (1968), 190–196 | DOI | MR | Zbl

[6] Diksme Zh., $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR

[7] Moore C. C., “Groups with finite dimensional irreducible representations”, Trans. Amer. Math. Soc., 166 (1972), 401–410 | DOI | MR | Zbl

[8] Shtern A. I., “Lokalno bikompaktnye gruppy s konechnomernymi neprivodimymi predstavleniyami”, Matem. sb., 90 (132):1 (1973), 86–93

[9] Grosser S., Mosak R., Moskowitz M., “Duality and harmonic analysis on central topological groups. I”, Nederl. Akad. Wet. Proc. Ser. A, 76 (1973), 65–77 | MR | Zbl

[10] Grosser S., Mosak R., Moskowitz M., “Duality and harmonic analysis on central topological groups. II”, Nederl. Akad. Wet. Proc. Ser. A, 76 (1973), 78–91 | MR | Zbl

[11] Palmer T. W., “Classes of nonabelian, noncompact, locally compact groups”, Rocky Mountain J. Math., 8:4 (1978), 683–741 | MR | Zbl

[12] Passman D. S., The algebraic structure of group rings, Wiley, New York, 1977 | MR | Zbl

[13] Ernest J., “A new group algebra for locally compact groups”, Amer. J. Math., 86 (1964), 467–492 | DOI | MR | Zbl

[14] Ernest J., “A new group algebra for locally compact groups. II”, Canad. J. Math., 17 (1965), 604–615 | MR | Zbl

[15] Eymard R., “L'algèbre de Fourier d'un groupe localement compact”, Bull. Soc. Math. France, 92 (1964), 181–236 | MR | Zbl

[16] Freedman W., Ülger A., “The Phillips properties”, Proc. Amer. Math. Soc., 128:7 (2000), 2137–2145 | DOI | MR | Zbl

[17] Maynard H., “A geometric characterization of Banach spaces possessing the Radon–Nikodym property”, Trans. Amer. Math. Soc., 185 (1973), 493–500 | DOI | MR

[18] Namioka I., Phelps R. R., “Banach spaces which are Asplund spaces”, Duke Math. J., 42:4 (1975), 735–750 | DOI | MR | Zbl

[19] Stegall C., “The Radon–Nikodym property in conjugate Banach spaces. II”, Trans. Amer. Math. Soc., 264:2 (1981), 507–519 | DOI | MR | Zbl

[20] Yost D., “Asplund spaces for beginners”, Acta Univ. Carolin. Math. Phys., 34:2 (1993), 159–177 | MR | Zbl

[21] Arsac G., “Sur l'espace de Banach engendré par les coefficients d'une représentation unitaire”, Publ. Dép. Math. (Lyon), 13:2 (1976), 1–101 | MR | Zbl

[22] Bélanger A., Forrest B. E., “Geometric properties of some subspaces of $V\!N(G)$”, Proc. Amer. Math. Soc., 122:1 (1994), 131–133 ; “Geometric properties of coefficient function spaces determined by unitary representations of a locally compact group”, J. Math. Anal. Appl., 193:2 (1995), 390–405 | DOI | MR | Zbl | DOI | MR | Zbl

[23] Bunce L. J., “The Dunford–Pettis property in the predual of a von Neumann algebra”, Proc. Amer. Math. Soc., 116:1 (1992), 99–100 | DOI | MR | Zbl

[24] Chu C. H., “A note on scattered $C^*$-algebras and the Radon–Nikodym property”, J. London Math. Soc. (2), 24:3 (1981), 533–536 | DOI | MR | Zbl

[25] Chu C. H., Iochum B., Watanabe S., “$C^*$-algebras with the Dunford–Pettis property”, Lecture Notes in Pure and Appl. Math., 136 (1992), 67–70 | MR | Zbl

[26] Lau A. T.-M., Ülger A., “Some geometric properties on the Fourier and Fourier–Stieltjes algebras of locally compact groups, Arens regularity and related problems”, Trans. Amer. Math. Soc., 337:1 (1993), 321–359 | DOI | MR | Zbl

[27] Ordman E. T., Morris S. A., “Almost locally invariant topological groups”, J. London Math. Soc. (2), 9 (1974/75), 30–34 | DOI | MR | Zbl

[28] Pahor M., “The structure of certain group $C^*$-algebras”, Bull. Austral. Math. Soc., 47:1 (1993), 169–174 | DOI | MR | Zbl

[29] Raeburn I., “On group $C^*$-algebras of bounded representation dimension”, Trans. Amer. Math. Soc., 272:2 (1982), 629–644 | DOI | MR | Zbl

[30] Taylor K., “The type structure of the regular representation of a locally compact group”, Math. Ann., 222:2 (1976), 211–214 | DOI | MR

[31] Taylor K., “Geometry of the Fourier algebras and locally compact groups with atomic representations”, Math. Ann., 262:2 (1983), 183–190 | DOI | MR | Zbl

[32] Schlichting G., “Polynomidentitaten und Darstellungen von Gruppen”, Monatsh. Math., 90:4 (1980), 311–313 | DOI | MR | Zbl

[33] Schlichting G., Groups with representations of bounded degree, Lecture Notes in Math., 706, Springer-Verlag, Berlin, 1979 | MR | Zbl

[34] Passman D. S., Temple W. V., “Groups with all irreducible modules of finite degree”, Algebra (Moscow, 1998), de Gruyter, Berlin, 2000, 263–279 | MR | Zbl

[35] Antonyan S., Sanchis M., “Extension of locally pseudocompact group actions”, Ann. Mat. Pura Appl. (4), 181 (2002), 239–246 | DOI | MR | Zbl

[36] Arhangel'skii A. V., “On a theorem of W. W. Comfort and K. A. Ross”, Comment. Math. Univ. Carolin., 40:1 (1999), 133–151 | MR

[37] Arhangel'skii A. V., “Moscow spaces, Pestov–Tkačenko problem, and $C$-embeddings”, Comment. Math. Univ. Carolin., 41:3 (2000), 585–595 | MR | Zbl

[38] Comfort W. W., Soundararajan T., Trigos-Arrieta F. J., “Determining a weakly locally compact group topology by its system of closed subgroups”, Papers in general topology and applications, Ann. New York Acad. Sci., 728, ed. S. Andina et al., New York Acad. Sci., New York, 1994, 25–33 | MR

[39] Comfort W. W., Trigos-Arrieta F. J., “Locally pseudocompact topological groups”, Topology Appl., 62:3 (1995), 263–280 | DOI | MR | Zbl

[40] Dikranjan D., Shakhmatov D., Algebraic structure of pseudocompact groups, Mem. Amer. Math. Soc., 633, Amer. Math. Soc., Providence, RI, 1998 | MR

[41] Hernandez S., Macario S., “Invariance of compactness for the Bohr topology”, Topology Appl., 111:1–2 (2001), 161–173 | MR | Zbl

[42] Remus D., Trigos-Arrieta F. J., “The Bohr topology of Moore groups”, Topology Appl., 97:1–2 (1999), 85–98 | DOI | MR | Zbl

[43] Sanchis M., “Continuous functions on locally pseudocompact groups”, Topology Appl., 86:1 (1998), 5–23 | DOI | MR | Zbl

[44] Tkachenko M. G., “Ob ogranichennosti i psevdokompaktnosti v topologicheskikh gruppakh”, Matem. zametki, 41:3 (1987), 400–405 | MR | Zbl

[45] Weil A., Sur les espaces à structure uniforme et sur la topologie génèrale, Hermann, Paris, 1937

[46] Shtern A. I., “Compact semitopological semigroups and reflexive representability of topological groups”, Russian J. Math. Phys., 2:1 (1994), 131–132 | MR | Zbl

[47] Davis W. J., Figiel T., Johnson W. B., Pelczynski A., “Factoring weakly compact operators”, J. Funct. Anal., 17 (1974), 311–327 | DOI | MR | Zbl

[48] Banaszczyk W., “On the existence of exotic Banach–Lie groups”, Math. Ann., 264:4 (1983), 485–493 | DOI | MR | Zbl

[49] Banaszczyk W., Additive subgroups of topological vector spaces, Lecture Notes in Math., 1466, Springer-Verlag, Berlin, 1991 | MR | Zbl

[50] Herer W., Christensen J. P. R., “On the existence of pathological submeasures and the construction of exotic topological groups”, Math. Ann., 213 (1975), 203–210 | DOI | MR | Zbl

[51] Dixmier J., Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1969

[52] Gaal S. A., Linear analysis and representation theory, Springer-Verlag, New York, 1973 | MR | Zbl

[53] Naimark M. A., Štern A. I. [Shtern], Theory of group representations, Springer-Verlag, New York, 1982 | MR | Zbl

[54] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[55] Day M., Normed linear spaces, Springer-Verlag, New York, 1973 | MR

[56] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[57] Danford N., Shvarts Dzh. T., Lineinye operatory, t. I, IL, M., 1962

[58] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969

[59] Grinlif F., Invariantnye srednie na topologicheskikh gruppakh i ikh prilozheniya, Mir, M., 1973

[60] Khyuitt E., Ross K. A., Abstraktnyi garmonicheskii analiz, I, Nauka, M., 1975

[61] Veil A., Integrirovanie v topologicheskikh gruppakh i ego primeneniya, IL, M., 1950

[62] Ellis R., “Locally compact transformation groups”, Duke Math. J., 24 (1957), 119–125 | DOI | MR | Zbl

[63] Glicksberg I., “Uniform boundedness for groups”, Canad. J. Math., 14 (1962), 269–276 | MR | Zbl

[64] Vilenkin N. Ya., “Primechaniya redaktora”, Integrirovanie v topologicheskikh gruppakh i ego primeneniya, IL, M., 1950, 167–211

[65] Enock M., Schwartz J.-M., Kac algebras and duality of locally compact groups, Springer-Verlag, Berlin, 1992 | MR | Zbl

[66] Gelfand I. M., Raikov D. A., “Neprivodimye unitarnye predstavleniya lokalno bikompaktnykh grupp”, Matem. sb., 13 (55) (1943), 301–316 | MR | Zbl

[67] Shtern A. I., “Representations of topological groups in locally convex spaces: continuity properties and weak almost periodicity”, Russian J. Math. Phys., 11:1 (2004), 81–108 | MR | Zbl

[68] de Leeuw K., Glicksberg I., “Applications of almost periodic compactifications”, Acta Math., 105 (1961), 63–97 | DOI | MR

[69] Sakai S., $C^*$-algebras and $W^*$-algebras, Springer-Verlag, Berlin, 1971 | MR | Zbl

[70] Joyal A., Street R., “An introduction to Tannaka duality and quantum groups”, Category theory (Como, 1990), Lecture Notes in Math., 1488, Springer-Verlag, Berlin, 1991, 413–492 | MR

[71] Waterhouse W. C., “Dual groups of vector spaces”, Pacific J. Math., 26:1 (1968), 193–196 | MR | Zbl

[72] Hofmann K. H., Mostert P., Splitting in topological groups, Mem. Amer. Math. Soc., 43, Amer. Math. Soc., Providence, RI, 1963 | MR

[73] Shtern A. I., “Kriterii slaboi i silnoi nepreryvnosti predstavlenii topologicheskikh grupp v banakhovykh prostranstvakh”, Matem. sb., 193:9 (2002), 139–156 | MR | Zbl

[74] Shtern A. I., “Continuity of Banach representations in terms of point variations”, Russian J. Math. Phys., 9:2 (2002), 250–252 | MR | Zbl