Spectral synthesis for the intersection of invariant subspaces of holomorphic functions
Sbornik. Mathematics, Tome 196 (2005) no. 3, pp. 423-445 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Omega$ be a convex domain in the complex plane $\mathbb C$ and $H$ the space of holomorphic functions in $\Omega$ with the topology of uniform convergence on compact subsets of $\Omega$. Let $W_1$ and $W_2$ be a pair of (differentiation) invariant subspaces of $H$ admitting spectral synthesis. Conditions ensuring that the intersection $W_1\cap W_2$ also admits spectral synthesis are described. One consequence of these conditions is a recent result of Abuzyarova (in a new, constructive and quantitative setting) on the representation of an invariant subspace admitting spectral synthesis as the solution space of a system of two homogeneous convolution equations. New approximation results for entire functions of exponential type are used.
@article{SM_2005_196_3_a4,
     author = {B. N. Khabibullin},
     title = {Spectral synthesis for the intersection of invariant subspaces of holomorphic functions},
     journal = {Sbornik. Mathematics},
     pages = {423--445},
     year = {2005},
     volume = {196},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_3_a4/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Spectral synthesis for the intersection of invariant subspaces of holomorphic functions
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 423
EP  - 445
VL  - 196
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_3_a4/
LA  - en
ID  - SM_2005_196_3_a4
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Spectral synthesis for the intersection of invariant subspaces of holomorphic functions
%J Sbornik. Mathematics
%D 2005
%P 423-445
%V 196
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2005_196_3_a4/
%G en
%F SM_2005_196_3_a4
B. N. Khabibullin. Spectral synthesis for the intersection of invariant subspaces of holomorphic functions. Sbornik. Mathematics, Tome 196 (2005) no. 3, pp. 423-445. http://geodesic.mathdoc.fr/item/SM_2005_196_3_a4/

[1] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. I. Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 87 (129):4 (1972), 459–489 | MR

[2] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. II. Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 88 (130):1 (1972), 3–30

[3] Leontev A. F., “O summirovanii ryada Dirikhle s kompleksnymi pokazatelyami i ego primenenii”, Trudy MIAN, 112, 1971, 300–326 | MR | Zbl

[4] Leontev A. F., Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980 | MR

[5] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. III. O rasprostranenii spektralnogo sinteza”, Matem. sb., 88 (130):3 (1972), 331–352 | MR

[6] Abuzyarova N. F., “Ob odnom svoistve podprostranstv, dopuskayuschikh spektralnyi sintez”, Matem. sb., 190:4 (1999), 3–22 | MR | Zbl

[7] Abuzyarova N. F., Konechno porozhdennye podmoduli v modulyakh tselykh funktsii, opredelyaemykh ogranicheniyami na indikator, Dis. ... kand. fiz.-matem. nauk, In-t matematiki UNTs RAN, Ufa, 2000

[8] Khabibullin B. N., “Zamknutye idealy i podmoduli golomorfnykh funktsii s dvumya porozhdayuschimi”, Geometricheskaya teoriya funktsii i kraevye zadachi, Trudy Matematicheskogo tsentra im. N. I. Lobachevskogo, 13, Kazanskoe matem. ob-vo, Kazan, 2002, 158–163 | MR

[9] Khabibullin B. N., “Zamknutye podmoduli golomorfnykh funktsii, porozhdennye podmodulyami, dopuskayuschimi lokalnoe opisanie”, Geometricheskaya teoriya funktsii i kraevye zadachi, Trudy Matematicheskogo tsentra im. N. I. Lobachevskogo, 14, Kazanskoe matem. ob-vo, Kazan, 2002, 280–298 | MR | Zbl

[10] Khabibullin B. N., “Zamknutye podmoduli golomorfnykh funktsii s dvumya porozhdayuschimi”, Funkts. analiz i ego prilozh., 38:1 (2004), 65–80 | MR | Zbl

[11] Khabibullin B. N., “Approksimatsionnaya teorema dlya tselykh funktsii eksponentsialnogo tipa i ustoichivost nul-posledovatelnostei”, Matem. sb., 195:1 (2004), 143–156 | MR | Zbl

[12] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Fizmatgiz, M., 1956

[13] Levin B. Ya., Lectures on entire functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[14] Khabibullin B. N., “O roste tselykh funktsii eksponentsialnogo tipa vdol mnimoi osi”, Matem. sb., 180:5 (1989), 706–719 | Zbl

[15] Khabibullin B. N., “Mnozhestva edinstvennosti v prostranstvakh tselykh funktsii odnoi peremennoi”, Izv. AN SSSR, 55:5 (1991), 1101–1123 | Zbl

[16] Khabibullin B. N., “Completeness of sets of complex exponentials in convex sets”, Trudy Mezhdunarodnoi konferentsii “Kompleksnyi analiz, differentsialnye uravneniya i smezhnye voprosy”, III. Analiz i differentsialnye uravneniya, In-t matematiki s VTs RAN, Ufa, 2000, 56–63

[17] Abuzyarova N. F., “Konechno porozhdennye podmoduli v module tselykh funktsii, opredelyaemom ogranicheniyami na indikator”, Matem. zametki, 71:1 (2002), 3–17 | MR | Zbl

[18] Mandelbroit S., Ryady Dirikhle. Printsipy i metody, Mir, M., 1973 | Zbl

[19] Santalo L., Integralnaya geometriya i geometricheskie veroyatnosti, Nauka, M., 1983 | MR | Zbl

[20] Titchmarsh E., Teoriya funktsii, Nauka, M., 1980 | MR | Zbl

[21] Lavrentev M. L., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987 | MR | Zbl

[22] Khabibullin B. N., “Spectral synthesis for the intersection of invariant subspaces of holomorphic functions”, International conference on complex analysis and potential theory, Abstracts, Institute of Mathematics of the National Academy of Ukraine, Kiev, 2001, 24–25