Characterization of the best polynomial approximation with a sign-sensitive weight to a continuous function
Sbornik. Mathematics, Tome 196 (2005) no. 3, pp. 395-422 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary and sufficient conditions for the best polynomial approximation with an arbitrary and, generally speaking, unbounded sign-sensitive weight to a continuous function are obtained; the components of the weight can also take infinite values, therefore the conditions obtained cover, in particular, approximation with interpolation at fixed points and one-sided approximation; in the case of the weight with components equal to 1 one arrives at Chebyshev's classical alternation theorem.
@article{SM_2005_196_3_a3,
     author = {A. K. Ramazanov},
     title = {Characterization of the best polynomial approximation with a sign-sensitive weight to a~continuous function},
     journal = {Sbornik. Mathematics},
     pages = {395--422},
     year = {2005},
     volume = {196},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_3_a3/}
}
TY  - JOUR
AU  - A. K. Ramazanov
TI  - Characterization of the best polynomial approximation with a sign-sensitive weight to a continuous function
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 395
EP  - 422
VL  - 196
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_3_a3/
LA  - en
ID  - SM_2005_196_3_a3
ER  - 
%0 Journal Article
%A A. K. Ramazanov
%T Characterization of the best polynomial approximation with a sign-sensitive weight to a continuous function
%J Sbornik. Mathematics
%D 2005
%P 395-422
%V 196
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2005_196_3_a3/
%G en
%F SM_2005_196_3_a3
A. K. Ramazanov. Characterization of the best polynomial approximation with a sign-sensitive weight to a continuous function. Sbornik. Mathematics, Tome 196 (2005) no. 3, pp. 395-422. http://geodesic.mathdoc.fr/item/SM_2005_196_3_a3/

[1] Dolzhenko E. P., Sevastyanov E. A., “Approksimatsii so znakochuvstvitelnym vesom (teoremy suschestvovaniya i edinstvennosti)”, Izv. RAN. Ser. matem., 62:6 (1998), 59–102 | MR | Zbl

[2] Dolzhenko E. P., Sevastyanov E. A., “Approksimatsiya so znakochuvstvitelnym vesom (ustoichivost, prilozheniya k teorii uzhei i khausdorfovym approksimatsiyam)”, Izv. RAN. Ser. matem., 63:3 (1999), 77–118 | MR | Zbl

[3] Minkowsky H., “Theorie der konvexen Korper, insbesondere Begrundung ihres Oberflachenbegriffs”, Ges. Abh., 2 (1911), 131–229

[4] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[5] Ramazanov A.-R. K., Ramazanov Z. A., “Kriterii elementa nailuchshego priblizheniya dlya znakochuvstvitelnykh approksimatsii”, Sovremennye metody teorii funktsii i smezhnye problemy, Tezisy dokladov Voronezhskoi zimnei matematicheskoi shkoly, Voronezh, 2001, 219–220

[6] Ramazanov A.-R. K., “Kharakterizatsiya polinoma nailuchshego priblizheniya nepreryvnoi funktsii v nesimmetrichnoi metrike”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy matematicheskogo obrazovaniya, Mezhdunarodnaya konferentsiya, posvyaschennaya L. D. Kudryavtsevu, Fizmatlit, M., 2003, 91–93