Characterization of the best polynomial approximation with a sign-sensitive weight to a~continuous function
Sbornik. Mathematics, Tome 196 (2005) no. 3, pp. 395-422
Voir la notice de l'article provenant de la source Math-Net.Ru
Necessary and sufficient conditions for the best polynomial approximation with an arbitrary and, generally speaking, unbounded sign-sensitive weight to a continuous function are obtained; the components of the weight can also take infinite values, therefore the conditions obtained cover, in particular, approximation with interpolation at fixed points and one-sided approximation; in the case of the weight with components equal to 1 one arrives at Chebyshev's classical alternation theorem.
@article{SM_2005_196_3_a3,
author = {A. K. Ramazanov},
title = {Characterization of the best polynomial approximation with a sign-sensitive weight to a~continuous function},
journal = {Sbornik. Mathematics},
pages = {395--422},
publisher = {mathdoc},
volume = {196},
number = {3},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_3_a3/}
}
TY - JOUR AU - A. K. Ramazanov TI - Characterization of the best polynomial approximation with a sign-sensitive weight to a~continuous function JO - Sbornik. Mathematics PY - 2005 SP - 395 EP - 422 VL - 196 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2005_196_3_a3/ LA - en ID - SM_2005_196_3_a3 ER -
A. K. Ramazanov. Characterization of the best polynomial approximation with a sign-sensitive weight to a~continuous function. Sbornik. Mathematics, Tome 196 (2005) no. 3, pp. 395-422. http://geodesic.mathdoc.fr/item/SM_2005_196_3_a3/