Indeterminacy of interpolation problems in the Stieltjes class
Sbornik. Mathematics, Tome 196 (2005) no. 3, pp. 367-393 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concept of ordered families of interpolation problems in the Stieltjes class is introduced. Ordered families are used for the introduction of the concept of limiting interpolation problem in the same class. The limiting interpolation problem is proved to be soluble. A criterion for the complete indeterminacy of a limiting interpolation problem in the Stieltjes class is obtained. All solutions in the completely indeterminate case are described in terms of linear fractional transformations. General constructions are illustrated by the examples of the Stieltjes moment problem and the Nevanlinna–Pick problem in the Stieltjes class.
@article{SM_2005_196_3_a2,
     author = {Yu. M. Dyukarev},
     title = {Indeterminacy of interpolation problems in the {Stieltjes} class},
     journal = {Sbornik. Mathematics},
     pages = {367--393},
     year = {2005},
     volume = {196},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_3_a2/}
}
TY  - JOUR
AU  - Yu. M. Dyukarev
TI  - Indeterminacy of interpolation problems in the Stieltjes class
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 367
EP  - 393
VL  - 196
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_3_a2/
LA  - en
ID  - SM_2005_196_3_a2
ER  - 
%0 Journal Article
%A Yu. M. Dyukarev
%T Indeterminacy of interpolation problems in the Stieltjes class
%J Sbornik. Mathematics
%D 2005
%P 367-393
%V 196
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2005_196_3_a2/
%G en
%F SM_2005_196_3_a2
Yu. M. Dyukarev. Indeterminacy of interpolation problems in the Stieltjes class. Sbornik. Mathematics, Tome 196 (2005) no. 3, pp. 367-393. http://geodesic.mathdoc.fr/item/SM_2005_196_3_a2/

[1] Nudelman A. A., “Ob odnom obobschenii klassicheskikh interpolyatsionnykh zadach”, Dokl. AN SSSR, 256:4 (1981), 790–793 | MR | Zbl

[2] Ivanchenko T. S., Sakhnovich L. A., “Operatornyi podkhod k skheme V. P. Potapova issledovaniya interpolyatsionnykh zadach”, Ukr. matem. zhurn., 39:5 (1987), 573–578 | MR | Zbl

[3] Katsnelson V. E., Kheifets A. Ya., Yuditskii P. M., “Abstraktnaya interpolyatsionnaya problema i teoriya rasshirenii izometricheskikh operatorov”, Operatory v funktsionalnykh prostranstvakh i voprosy teorii funktsii, Sbornik nauchnykh trudov, Naukova dumka, Kiev, 1987, 83–96 | MR

[4] Kheifets A. Ya., Yuditskii P. M., “Ah analysis and extension of V. P. Potapov approach to interpolation problems with applications to the generalized bi-tangential Schur–Nevanlinna–Pick problem and J-inner-outer factorization”, Oper. Theory Adv. Appl., 72 (1994), 133–161 | MR | Zbl

[5] Ivanchenko T. S., Sakhnovich L. A., “An operator approach to the Potapov scheme for the solution of interpolation problems”, Oper. Theory Adv. Appl., 72 (1994), 48–86 | MR | Zbl

[6] Dyukarev Yu. M., “Integral representations of a pair of nonnegative operators and interpolation problems in the Stieltjes class”, Oper. Theory Adv. Appl., 95 (1997), 165–184 | MR | Zbl

[7] Dyukarev Yu. M., “Obschaya skhema resheniya interpolyatsionnykh zadach v klasse Stiltesa, osnovannaya na soglasovannykh integralnykh predstavleniyakh par neotritsatelnykh operatorov. I”, Matem. fizika, analiz, geom., 6:1/2 (1999), 30–54 | MR | Zbl

[8] Bolotnikov V., Sakhnovich L., “On an operator approach to interpolation problems for Stieltjes fanctions”, Integral Equations Operator Theory, 35 (1999), 423–470 | DOI | MR | Zbl

[9] Stieltjes T., “Recherches sur les fractions continues”, Ann. Fac. Sci. Toulouse Math. (6), 8 (1894), 1–122 ; 9 (1895), 1–47 | MR

[10] Schur I., “Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind”, J. Reine Angew. Math., 147 (1917), 205–232; 148 (1918), 122–145 | Zbl

[11] Hamburger H., “Über eine Erweitung des Stieltjesschen Momentenproblem”, Math. Ann., 81 (1920), 235–319 ; 82 (1921), 120–164 ; 82 (1921), 168–187 | DOI | MR | Zbl | DOI | DOI | MR | Zbl

[12] Kovalishina I. V., Potapov V. P., “Indefinitnaya metrika v probleme Nevanlinny–Pika”, Dokl. AN ArmSSR, 59:1 (1974), 17–22 | MR | Zbl

[13] Kovalishina I. V., “Analiticheskaya teoriya odnogo klassa interpolyatsionnykh zadach”, Izv. AN SSSR. Ser. matem., 47:3 (1983), 455–497 | MR

[14] Potapov V. P., “K teorii matrichnykh krugov Veilya”, Funktsionalnyi analiz i prikladnaya matematika, Naukova dumka, Kiev, 1982, 113–121 | MR

[15] Potapov V. P., “Drobno-lineinye preobrazovaniya matrits”, Issledovaniya po teorii operatorov i ikh prilozheniyam, Naukova dumka, Kiev, 1979, 75–97 | MR

[16] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[17] Dyukarev Yu. M., Katsnelson V. E., “Multiplikativnye i additivnye klassy Stiltesa analiticheskikh matrits-funktsii i svyazannye s nimi interpolyatsionnye zadachi”, Teoriya funktsii, funkts. analiz i ikh prilozh., 1981, no. 36, 13–27 | MR | Zbl

[18] Dyukarev Yu. M., Choke Rivero A. E., “Stepennaya problema momentov na kompaktnom intervale”, Matem. zametki, 69:2 (2001), 200–213 | MR | Zbl

[19] Simon B., “The classical moment problem as a self-adjoint finite differense operator”, Adv. Math., 137 (1998), 82–203 | DOI | MR | Zbl

[20] Donoghue W. F., Monotone matrix functions and analytic continuation, Springer-Verlag, Berlin, 1974 | MR | Zbl

[21] Orlov S. A., “Gnezdyaschiesya matrichnye krugi, analiticheski zavisyaschie ot parametra, i teoremy ob invariantnosti rangov radiusov predelnykh matrichnykh krugov”, Izv. AN SSSR. Ser. matem., 40:3 (1976), 593–644 | MR | Zbl