Sails and norm minima of lattices
Sbornik. Mathematics, Tome 196 (2005) no. 3, pp. 337-365 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that a real number is badly approximable if and only if its partial quotients are uniformly bounded. In this paper an analogous assertion is proved for the so-called sails, which is one of the most natural multidimensional generalizations of continued fractions.
@article{SM_2005_196_3_a1,
     author = {O. N. German},
     title = {Sails and norm minima of lattices},
     journal = {Sbornik. Mathematics},
     pages = {337--365},
     year = {2005},
     volume = {196},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_3_a1/}
}
TY  - JOUR
AU  - O. N. German
TI  - Sails and norm minima of lattices
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 337
EP  - 365
VL  - 196
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_3_a1/
LA  - en
ID  - SM_2005_196_3_a1
ER  - 
%0 Journal Article
%A O. N. German
%T Sails and norm minima of lattices
%J Sbornik. Mathematics
%D 2005
%P 337-365
%V 196
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2005_196_3_a1/
%G en
%F SM_2005_196_3_a1
O. N. German. Sails and norm minima of lattices. Sbornik. Mathematics, Tome 196 (2005) no. 3, pp. 337-365. http://geodesic.mathdoc.fr/item/SM_2005_196_3_a1/

[1] Erdös P., Gruber M., Hammer J., Lattice points, Pitman Monogr. Surveys Pure Appl. Math., 39, Longman Scientific Technical, Harlow, 1989 | Zbl

[2] Arnold V. I., “$A$-graded algebras and continued fractions”, Comm. Pure Appl. Math., 42 (1989), 993–1000 | DOI | MR | Zbl

[3] Arnold V. I., “Higher dimensional continued fractions”, Regul. Chaotic Dyn., 3:3 (1998), 10–17 | DOI | MR | Zbl

[4] Tsuchihashi H., “Higher dimensional analogues of periodic continued fractions and cusp singularities”, Tohoku Math. J. (2), 35 (1983), 607–639 | DOI | MR | Zbl

[5] Lachaud G., “Sails and Klein polyhedra”, Contemp. Math., 210 (1998), 373–385 | MR | Zbl

[6] Lachaud G., Voiles et polyèdres de Klein. I, II, Preprints No 95-22, Laboratoire de Mathématiques Discrétes, C.N.R.S., Marseille-Luminy, 1995

[7] Korkina E., “Classification of $A$-graded algebras with 3 generators”, Indag. Math. (N.S.), 3:1 (1992), 27–40 | DOI | MR | Zbl

[8] Korkina E., “La périodecité des fractions continues multidimensionnelles”, C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 777–780 | MR | Zbl

[9] Korkina E. I., “Dvumernye tsepnye drobi. Samye prostye primery”, Trudy MIAN, 209, 1995, 143–166 | MR | Zbl

[10] Bryuno A. D., Parusnikov V. I., “Mnogogranniki Kleina dlya dvukh kubicheskikh form Davenporta”, Matem. zametki, 56:4 (1994), 9–27 | MR | Zbl

[11] Mussafir Zh.-O., “Parusa i bazisy Gilberta”, Funkts. analiz i ego prilozh., 34:2 (2000), 43–49 | MR

[12] German O. N., “Parusa i bazisy Gilberta”, Trudy MIAN, 239, 2002, 98–105 | MR | Zbl

[13] Kontsevich M. L., Suhov Yu. M., “Statistics of Klein polyhedra and multidimensional continued fractions”, Amer. Math. Soc. Transl. Ser. 2, 197 (1999), 9–27 | MR | Zbl

[14] Moussafir J.-O., “Convex hulls of integral points”, Zapiski nauchn. sem. POMI, 266, 2000, 188–217 | MR

[15] Cassels J. W. S., Swinnerton-Dyer H. P. F., “On the product of three homogeneous linear forms and indefinite ternary quadratic forms”, Philos. Trans. Roy. Soc. London Ser. A, 248 (1955), 73–96 | DOI | MR | Zbl

[16] Skubenko B. F., “Minimumy razlozhimoi kubicheskoi formy ot trekh peremennykh”, Analiticheskaya teoriya chisel i teoriya funktsii. 9, Zapiski nauchn. sem. LOMI, 168, 1988, 125–139 | Zbl

[17] Skubenko B. F., “Minimumy razlozhimykh form stepeni $n$ ot $n$ peremennykh pri $n\ge 3$”, Modulyarnye funktsii i kvadratichnye formy. 1, Zapiski nauchn. sem. LOMI, 183, 1990, 142–154

[18] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1964

[19] Dantser L., Gryunbaum B., Kli V., Teorema Khelli, Mir, M., 1968