Triangular transformations of measures
Sbornik. Mathematics, Tome 196 (2005) no. 3, pp. 309-335

Voir la notice de l'article provenant de la source Math-Net.Ru

A new identity for the entropy of a non-linear image of a measure on $\mathbb R^n$ is obtained, which yields the well-known Talagrand's inequality. Triangular mappings on $\mathbb R^n$ and $\mathbb R^\infty$ are studied, that is, mappings $T$ such that the $i$th coordinate function $T_i$ depends only on the variables $x_1,\dots,x_i$. With the help of such mappings the well-known open problem on the representability of each probability measure that is absolutely continuous with respect to a Gaussian measure $\gamma$ on an infinite dimensional space as the image of $\gamma$ under a map of the form $T(x)=x+F(x)$ where $F$ takes values in the Cameron–Martin space of the measure $\gamma$ is solved in the affirmative. As an application, a generalized logarithmic Sobolev inequality is also proved.
@article{SM_2005_196_3_a0,
     author = {V. I. Bogachev and A. V. Kolesnikov and K. V. Medvedev},
     title = {Triangular transformations of measures},
     journal = {Sbornik. Mathematics},
     pages = {309--335},
     publisher = {mathdoc},
     volume = {196},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_3_a0/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - A. V. Kolesnikov
AU  - K. V. Medvedev
TI  - Triangular transformations of measures
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 309
EP  - 335
VL  - 196
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_3_a0/
LA  - en
ID  - SM_2005_196_3_a0
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A A. V. Kolesnikov
%A K. V. Medvedev
%T Triangular transformations of measures
%J Sbornik. Mathematics
%D 2005
%P 309-335
%V 196
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_3_a0/
%G en
%F SM_2005_196_3_a0
V. I. Bogachev; A. V. Kolesnikov; K. V. Medvedev. Triangular transformations of measures. Sbornik. Mathematics, Tome 196 (2005) no. 3, pp. 309-335. http://geodesic.mathdoc.fr/item/SM_2005_196_3_a0/