Triangular transformations of measures
Sbornik. Mathematics, Tome 196 (2005) no. 3, pp. 309-335 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new identity for the entropy of a non-linear image of a measure on $\mathbb R^n$ is obtained, which yields the well-known Talagrand's inequality. Triangular mappings on $\mathbb R^n$ and $\mathbb R^\infty$ are studied, that is, mappings $T$ such that the $i$th coordinate function $T_i$ depends only on the variables $x_1,\dots,x_i$. With the help of such mappings the well-known open problem on the representability of each probability measure that is absolutely continuous with respect to a Gaussian measure $\gamma$ on an infinite dimensional space as the image of $\gamma$ under a map of the form $T(x)=x+F(x)$ where $F$ takes values in the Cameron–Martin space of the measure $\gamma$ is solved in the affirmative. As an application, a generalized logarithmic Sobolev inequality is also proved.
@article{SM_2005_196_3_a0,
     author = {V. I. Bogachev and A. V. Kolesnikov and K. V. Medvedev},
     title = {Triangular transformations of measures},
     journal = {Sbornik. Mathematics},
     pages = {309--335},
     year = {2005},
     volume = {196},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_3_a0/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - A. V. Kolesnikov
AU  - K. V. Medvedev
TI  - Triangular transformations of measures
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 309
EP  - 335
VL  - 196
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_3_a0/
LA  - en
ID  - SM_2005_196_3_a0
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A A. V. Kolesnikov
%A K. V. Medvedev
%T Triangular transformations of measures
%J Sbornik. Mathematics
%D 2005
%P 309-335
%V 196
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2005_196_3_a0/
%G en
%F SM_2005_196_3_a0
V. I. Bogachev; A. V. Kolesnikov; K. V. Medvedev. Triangular transformations of measures. Sbornik. Mathematics, Tome 196 (2005) no. 3, pp. 309-335. http://geodesic.mathdoc.fr/item/SM_2005_196_3_a0/

[1] Knote H., “Contributions to the theory of convex bodies”, Michigan Math. J., 4 (1957), 39–52 | DOI | MR

[2] Bobkov S. G., “Large deviations via transference plans”, Advances in Math. Research, 2, Nova Sci. Publ., New York, 2003, 151–175 | MR | Zbl

[3] Talagrand M., “Transportation cost for Gaussian and other product measures”, Geom. Funct. Anal., 6 (1996), 587–600 | DOI | MR | Zbl

[4] Brenier Y., “Polar factorization and monotone rearrangement of vector valued functions”, Comm. Pure Appl. Math., 44 (1991), 375–417 | DOI | MR | Zbl

[5] McCann R. J., “Existence and uniqueness of monotone measure-preserving maps”, Duke Math. J., 80 (1995), 309–323 | DOI | MR | Zbl

[6] Villani C., Topics in optimal transportation, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[7] Otto F., Villani C., “Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality”, J. Funct. Anal., 173 (2000), 361–400 | DOI | MR | Zbl

[8] Cordero-Erausquin D., “Some applications of mass transport to Gaussian-type inequalities”, Arch. Ration. Mech. Anal., 161 (2002), 257–269 | DOI | MR | Zbl

[9] Feyel D., Üstünel A. S., “Transport of measures on Wiener space and the Girsanov theorem”, C. R. Acad. Sci. Paris Sér. I Math., 334:1 (2002), 1025–1028 | MR | Zbl

[10] Feyel D., Üstünel A. S., “Monge–Kantorovitch measure transportation and Monge–Ampère equation on Wiener space”, Probab. Theory Related Fields., 128:3 (2004), 347–385 | DOI | MR | Zbl

[11] Bogachev V. I., Gaussovskie mery, Nauka, M., 1997 | MR

[12] Üstünel A. S., Zakai M., Transformation of measure on Wiener space, Springer, Berlin, 2000 | MR

[13] Fernique X., “Extension du théorème de Cameron–Martin aux translations aléatoires”, Ann. Probab., 31:3 (2003), 1296–1304 | DOI | MR | Zbl

[14] Bogachev V. I., Kolesnikov A. V., Medvedev K. V., “O treugolnykh preobrazovaniyakh mer”, Dokl. RAN, 396:6 (2004), 727–732 | MR | Zbl

[15] Kolesnikov A. V., “Neravenstva vypuklosti i nelineinye preobrazovaniya mer”, Dokl. RAN, 396:3 (2004), 300–304 | MR | Zbl

[16] Bogachev V. I., Osnovy teorii mery, t. 1, 2, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2003

[17] Kechris A., Classical descriptive set theory, Springer, Berlin, 1995 | MR | Zbl

[18] Aleksandrova D. E., “Skhodimost treugolnykh preobrazovanii mer”, Teoriya veroyatnostei i ee prim., 50:1 (2005), 145–150 | MR | Zbl

[19] Rachev S. T., Rüschendorf L., Mass transportation problems, vol. I, Springer-Verlag, New York, 1998 | MR | Zbl

[20] Hajłasz P., “Change of variables formula under minimal assumptions”, Colloq. Math., 64:1 (1993), 93–101 | MR | Zbl

[21] Bogachev V. I., Kolesnikov A. V., “Nelineinye preobrazovaniya vypuklykh mer i entropiya plotnostei Radona–Nikodima”, Dokl. RAN, 397:2 (2004), 155–159 | MR

[22] Bogachev V. I., Kolesnikov A. V., “O nelineinykh preobrazovaniyakh vypuklykh mer”, Teoriya veroyatnostei i ee prim., 50:1 (2005), 27–51 | MR

[23] Kolesnikov A. V., “Convexity inequalities and optimal transport of infinite-dimensional measures”, J. Math. Pures Appl. (9), 83 (2004), 1373–1404 | MR | Zbl