Piecewise lexsegment ideals in exterior algebras
Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 287-307 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of describing the Hilbert functions of homogeneous ideals of an exterior algebra over a field containing a fixed monomial ideal $I$ is considered. For this purpose the notion of a piecewise lexsegment ideal in an exterior algebra is introduced generalizing the notion of a lexsegment ideal. It is proved that if $I$ is a piecewise lexsegment ideal, then it is possible to describe the Hilbert functions of the homogeneous ideals containing $I$ in a way similar to that suggested by Kruskal and Katona for the situation $I=0$. Moreover, a generalization of the extremal properties of lexsegment ideals is obtained (the inequality for the Betti numbers).
@article{SM_2005_196_2_a6,
     author = {D. A. Shakin},
     title = {Piecewise lexsegment ideals in exterior algebras},
     journal = {Sbornik. Mathematics},
     pages = {287--307},
     year = {2005},
     volume = {196},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_2_a6/}
}
TY  - JOUR
AU  - D. A. Shakin
TI  - Piecewise lexsegment ideals in exterior algebras
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 287
EP  - 307
VL  - 196
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_2_a6/
LA  - en
ID  - SM_2005_196_2_a6
ER  - 
%0 Journal Article
%A D. A. Shakin
%T Piecewise lexsegment ideals in exterior algebras
%J Sbornik. Mathematics
%D 2005
%P 287-307
%V 196
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2005_196_2_a6/
%G en
%F SM_2005_196_2_a6
D. A. Shakin. Piecewise lexsegment ideals in exterior algebras. Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 287-307. http://geodesic.mathdoc.fr/item/SM_2005_196_2_a6/

[1] Hochster M., “Cohen–Macaulay rings, combinatorics, and simplicial complexes”, Ring Theory II, Proc. 2nd Okla. Conf. (1975), eds. B. R. McDonald and R. Morris, Dekker, New York, 1977, 171–223 | MR

[2] Stanley R. P., Combinatorics and commutative algebra, Progr. Math., 41, Birkhäuser, Boston, 1983 | MR | Zbl

[3] Gotzmann G., “Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes”, Math. Z., 158 (1978), 61–70 | DOI | MR | Zbl

[4] Bigatti A. M., “Upper bounds for the Betti numbers of a given Hilbert function”, Comm. Algebra, 21:7 (1993), 2317–2334 | DOI | MR | Zbl

[5] Hulett H. A., “Maximum Betti numbers of homogeneous ideals with a given Hilbert function”, Comm. Algebra, 21:7 (1993), 2335–2350 | DOI | MR | Zbl

[6] Kruskal J., “The number of simplices in a complex”, Mathematical optimization techniques, ed. R. Bellman, University of California Press, Berkeley, 1963, 251–278 | MR

[7] Katona G., “A theorem for finite sets”, Theory of graphs, eds. P. Erdős and G. Katona, Academic Press, New York, 1968, 187–207 | MR

[8] Macaulay F. S., “Some properties of enumeration in the theory of modular systems”, Proc. London Math. Soc. (2), 26:2 (1927), 531–555 | DOI | Zbl

[9] Shakin D. A., “Kusochno lekssegmentnye idealy”, Matem. sb., 194:11 (2003), 117–140 | MR | Zbl

[10] Aramova A., Herzog J., Hibi T., “Shifting operations and graded Betti numbers”, J. Algebraic. Combin., 12:3 (2000), 207–222 | DOI | MR | Zbl

[11] Aramova A., Herzog J., Hibi T., “Gotzmann theorems for exterior algebras and combinatorics”, J. Algebra, 191:1 (1997), 174–211 | DOI | MR | Zbl

[12] Shakin D. A., “O nekotorykh obobscheniyakh kombinatornoi teoremy Makoleya na sluchai faktorkolets”, Matem. sb., 192:9 (2001), 143–160 | MR | Zbl

[13] Aramova A., Herzog J., Hibi T., “Squarefree lexsegment ideals”, Math. Z., 228:2 (1998), 353–378 | DOI | MR | Zbl

[14] Aramova A., Avramov L. L., Herzog J., “Resolutions of monomial ideals and cohomology over exterior algebras”, Trans. Amer. Math. Soc., 352:2 (2000), 579–594 | DOI | MR | Zbl