Piecewise lexsegment ideals in exterior algebras
Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 287-307

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of describing the Hilbert functions of homogeneous ideals of an exterior algebra over a field containing a fixed monomial ideal $I$ is considered. For this purpose the notion of a piecewise lexsegment ideal in an exterior algebra is introduced generalizing the notion of a lexsegment ideal. It is proved that if $I$ is a piecewise lexsegment ideal, then it is possible to describe the Hilbert functions of the homogeneous ideals containing $I$ in a way similar to that suggested by Kruskal and Katona for the situation $I=0$. Moreover, a generalization of the extremal properties of lexsegment ideals is obtained (the inequality for the Betti numbers).
@article{SM_2005_196_2_a6,
     author = {D. A. Shakin},
     title = {Piecewise lexsegment ideals in exterior algebras},
     journal = {Sbornik. Mathematics},
     pages = {287--307},
     publisher = {mathdoc},
     volume = {196},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_2_a6/}
}
TY  - JOUR
AU  - D. A. Shakin
TI  - Piecewise lexsegment ideals in exterior algebras
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 287
EP  - 307
VL  - 196
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_2_a6/
LA  - en
ID  - SM_2005_196_2_a6
ER  - 
%0 Journal Article
%A D. A. Shakin
%T Piecewise lexsegment ideals in exterior algebras
%J Sbornik. Mathematics
%D 2005
%P 287-307
%V 196
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_2_a6/
%G en
%F SM_2005_196_2_a6
D. A. Shakin. Piecewise lexsegment ideals in exterior algebras. Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 287-307. http://geodesic.mathdoc.fr/item/SM_2005_196_2_a6/