Bogolyubov's theorem under constraints generated by a~lower semicontinuous differential inclusion
Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 263-285
Voir la notice de l'article provenant de la source Math-Net.Ru
An analogue of the classical theorem of Bogolyubov with non-convex constraint is proved. The constraint is the solution set of a differential inclusion with non-convex lower semicontinuous right-hand side. As an application we study the interrelation between the solutions of the problem of minimizing an integral functional with non-convex integrand on the solutions of the original inclusion and the solutions of the relaxation problem.
@article{SM_2005_196_2_a5,
author = {A. A. Tolstonogov},
title = {Bogolyubov's theorem under constraints generated by a~lower semicontinuous differential inclusion},
journal = {Sbornik. Mathematics},
pages = {263--285},
publisher = {mathdoc},
volume = {196},
number = {2},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_2_a5/}
}
TY - JOUR AU - A. A. Tolstonogov TI - Bogolyubov's theorem under constraints generated by a~lower semicontinuous differential inclusion JO - Sbornik. Mathematics PY - 2005 SP - 263 EP - 285 VL - 196 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2005_196_2_a5/ LA - en ID - SM_2005_196_2_a5 ER -
A. A. Tolstonogov. Bogolyubov's theorem under constraints generated by a~lower semicontinuous differential inclusion. Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 263-285. http://geodesic.mathdoc.fr/item/SM_2005_196_2_a5/