Bogolyubov's theorem under constraints generated by a lower semicontinuous differential inclusion
Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 263-285 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An analogue of the classical theorem of Bogolyubov with non-convex constraint is proved. The constraint is the solution set of a differential inclusion with non-convex lower semicontinuous right-hand side. As an application we study the interrelation between the solutions of the problem of minimizing an integral functional with non-convex integrand on the solutions of the original inclusion and the solutions of the relaxation problem.
@article{SM_2005_196_2_a5,
     author = {A. A. Tolstonogov},
     title = {Bogolyubov's theorem under constraints generated by a~lower semicontinuous differential inclusion},
     journal = {Sbornik. Mathematics},
     pages = {263--285},
     year = {2005},
     volume = {196},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_2_a5/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - Bogolyubov's theorem under constraints generated by a lower semicontinuous differential inclusion
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 263
EP  - 285
VL  - 196
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_2_a5/
LA  - en
ID  - SM_2005_196_2_a5
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T Bogolyubov's theorem under constraints generated by a lower semicontinuous differential inclusion
%J Sbornik. Mathematics
%D 2005
%P 263-285
%V 196
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2005_196_2_a5/
%G en
%F SM_2005_196_2_a5
A. A. Tolstonogov. Bogolyubov's theorem under constraints generated by a lower semicontinuous differential inclusion. Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 263-285. http://geodesic.mathdoc.fr/item/SM_2005_196_2_a5/

[1] Bogolyubov N. N., “Sur quelques method nonvelles dans le calculas des variations”, Ann. Math. Pura Appl. (4), 7 (1930), 249–271 | DOI | MR

[2] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[3] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[4] Tolstonogov A. A., “Relaksatsiya v nevypuklykh zadachakh optimalnogo upravleniya, opisyvaemykh evolyutsionnymi uravneniyami pervogo poryadka”, Matem. sb., 190:11 (1999), 135–160 | MR | Zbl

[5] Tolstonogov A. A., “Teorema Bogolyubova pri ogranicheniyakh, porozhdennykh evolyutsionnoi upravlyaemoi sistemoi vtorogo poryadka”, Izv. RAN. Ser. matem., 67:5 (2003), 177–206 | MR | Zbl

[6] Himmelberg C. J., “Measurable relations”, Fund. Math., 87 (1975), 53–72 | MR | Zbl

[7] Burbaki N., Topologicheskie vektornye prostranstva, IL, M., 1959

[8] Tolstonogov A. A., Differential inclusions in a Banach space, Kluwer Acad. Publ., Dordrecht, 2000 | MR | Zbl

[9] Tolstonogov A. A., “K teoreme Skortsa–Dragoni dlya mnogoznachnykh otobrazhenii s peremennoi oblastyu opredeleniya”, Matem. zametki, 48:5 (1990), 109–120 | MR | Zbl

[10] Tolstonogov A. A., Tolstonogov D. A., “$L_p$-continuous extreme selectors of multifunctions with decomposable values: relaxation theorems”, Set-Valued Anal., 4 (1996), 237–269 | DOI | MR | Zbl

[11] Hiai F., Umegaki H., “Integrals, conditional expectations and martingales of multivalued functions”, J. Multivariate Anal., 7 (1997), 149–182 | DOI | MR

[12] Tolstonogov A. A., Tolstonogov D. A., “$L_p$-continuous extreme selectors of multifunctions with decomposable values: existence theorems”, Set-Valued Anal., 4 (1996), 173–203 | DOI | MR | Zbl

[13] Fryszkowski A., “Continuous selections for a class of nonsonvex multivalued maps”, Studia Math., 76 (1983), 163–174 | MR | Zbl

[14] Brezis H., Operateurs maximaux monotones et semi-groups de contractios dans les espaces de Hilbert, North-Holland, Amsterdam, 1973 | MR

[15] Balder E. J., “Necessary and sufficient condition for $L_1$-strong-weak lower semicontinuity of integral functionals”, Nonlinear Anal., 11:12 (1987), 1399–1404 | DOI | MR | Zbl

[16] Plis A., “Trajectories and quasitrajectories of an Orientor field”, Bull. Acad. Polon. Sci., Ser. Sci. Math., Astronom., Phys., 11 (1963), 369–370 | MR | Zbl

[17] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[18] Gelbaum B., Olmsted Dzh., Kontrprimery v analize, Mir, M., 1967 | Zbl

[19] Filippov A. F., “Klassicheskie resheniya differentsialnykh uravnenii s mnogoznachnoi pravoi chastyu”, Vestn. MGU. Ser. 1. Matem., mekh., 1967, no. 3, 16–26 | Zbl

[20] Donchev T., “Lower semicontinuous differential inclusions. One sided Lipschitz approach”, Colloq. Math., 74:2 (1997), 177–184 | MR | Zbl