Bogolyubov's theorem under constraints generated by a~lower semicontinuous differential inclusion
Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 263-285

Voir la notice de l'article provenant de la source Math-Net.Ru

An analogue of the classical theorem of Bogolyubov with non-convex constraint is proved. The constraint is the solution set of a differential inclusion with non-convex lower semicontinuous right-hand side. As an application we study the interrelation between the solutions of the problem of minimizing an integral functional with non-convex integrand on the solutions of the original inclusion and the solutions of the relaxation problem.
@article{SM_2005_196_2_a5,
     author = {A. A. Tolstonogov},
     title = {Bogolyubov's theorem under constraints generated by a~lower semicontinuous differential inclusion},
     journal = {Sbornik. Mathematics},
     pages = {263--285},
     publisher = {mathdoc},
     volume = {196},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_2_a5/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - Bogolyubov's theorem under constraints generated by a~lower semicontinuous differential inclusion
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 263
EP  - 285
VL  - 196
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_2_a5/
LA  - en
ID  - SM_2005_196_2_a5
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T Bogolyubov's theorem under constraints generated by a~lower semicontinuous differential inclusion
%J Sbornik. Mathematics
%D 2005
%P 263-285
%V 196
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_2_a5/
%G en
%F SM_2005_196_2_a5
A. A. Tolstonogov. Bogolyubov's theorem under constraints generated by a~lower semicontinuous differential inclusion. Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 263-285. http://geodesic.mathdoc.fr/item/SM_2005_196_2_a5/