Uniqueness for multiple Haar series
Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 243-261

Voir la notice de l'article provenant de la source Math-Net.Ru

Uniqueness questions are considered for multiple Haar series convergent over rectangles or in the sense of $\rho$-regular convergence. A condition is found ensuring that a given set is a relative uniqueness set under assumptions that are many-dimensional analogues of the Arutyunyan–Talalyan condition. This generalizes to $\rho$-regular convergence results for convergence over rectangles obtained by Movsisyan and Skvortsov. A monotonicity theorem is proved under very general assumptions for a dyadic-interval function used in the construction of a many-dimensional generalized integral of Perron type, which is called the $(P^{\rho,*}_d )$-integral. With the help of this integral one can recover by Fourier's formulae the coefficients of multiple Haar series from a fairly broad class including, in particular, series with power growth of partial sums at points with at least one dyadic rational coordinate. It is observed that already in the two-dimensional case the main results are best possible in a certain sense.
@article{SM_2005_196_2_a4,
     author = {M. G. Plotnikov},
     title = {Uniqueness for multiple {Haar} series},
     journal = {Sbornik. Mathematics},
     pages = {243--261},
     publisher = {mathdoc},
     volume = {196},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_2_a4/}
}
TY  - JOUR
AU  - M. G. Plotnikov
TI  - Uniqueness for multiple Haar series
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 243
EP  - 261
VL  - 196
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_2_a4/
LA  - en
ID  - SM_2005_196_2_a4
ER  - 
%0 Journal Article
%A M. G. Plotnikov
%T Uniqueness for multiple Haar series
%J Sbornik. Mathematics
%D 2005
%P 243-261
%V 196
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_2_a4/
%G en
%F SM_2005_196_2_a4
M. G. Plotnikov. Uniqueness for multiple Haar series. Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 243-261. http://geodesic.mathdoc.fr/item/SM_2005_196_2_a4/