Uniqueness for multiple Haar series
Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 243-261 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Uniqueness questions are considered for multiple Haar series convergent over rectangles or in the sense of $\rho$-regular convergence. A condition is found ensuring that a given set is a relative uniqueness set under assumptions that are many-dimensional analogues of the Arutyunyan–Talalyan condition. This generalizes to $\rho$-regular convergence results for convergence over rectangles obtained by Movsisyan and Skvortsov. A monotonicity theorem is proved under very general assumptions for a dyadic-interval function used in the construction of a many-dimensional generalized integral of Perron type, which is called the $(P^{\rho,*}_d )$-integral. With the help of this integral one can recover by Fourier's formulae the coefficients of multiple Haar series from a fairly broad class including, in particular, series with power growth of partial sums at points with at least one dyadic rational coordinate. It is observed that already in the two-dimensional case the main results are best possible in a certain sense.
@article{SM_2005_196_2_a4,
     author = {M. G. Plotnikov},
     title = {Uniqueness for multiple {Haar} series},
     journal = {Sbornik. Mathematics},
     pages = {243--261},
     year = {2005},
     volume = {196},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_2_a4/}
}
TY  - JOUR
AU  - M. G. Plotnikov
TI  - Uniqueness for multiple Haar series
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 243
EP  - 261
VL  - 196
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_2_a4/
LA  - en
ID  - SM_2005_196_2_a4
ER  - 
%0 Journal Article
%A M. G. Plotnikov
%T Uniqueness for multiple Haar series
%J Sbornik. Mathematics
%D 2005
%P 243-261
%V 196
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2005_196_2_a4/
%G en
%F SM_2005_196_2_a4
M. G. Plotnikov. Uniqueness for multiple Haar series. Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 243-261. http://geodesic.mathdoc.fr/item/SM_2005_196_2_a4/

[1] Skvortsov V. A., “O mnozhestvakh edinstvennosti dlya mnogomernykh ryadov Khaara”, Matem. zametki, 14:6 (1973), 789–798 | MR | Zbl

[2] Arutyunyan F. G., Talalyan A. A., “O edinstvennosti ryadov po sistemam Khaara i Uolsha”, Izv. AN SSSR. Ser. matem., 28 (1964), 1391–1408 | MR | Zbl

[3] Ulyanov P. L., “O ryadakh po sisteme Khaara”, Matem. sb., 63 (105):3 (1964), 356–391 | MR | Zbl

[4] McLaughlin J., Price J., “Comparison of Haar series with gaps with trigonometric series”, Pacific J. Math., 28:3 (1969), 333–371 | MR

[5] Skvortsov V. A., “Differentsirovanie otnositelno setei i ryady Khaara”, Matem. zametki, 4:1 (1968), 33–40 | MR | Zbl

[6] Skvortsov V. A., “Vychislenie koeffitsientov vsyudu skhodyaschegosya ryada Khaara”, Matem. sb., 75 (117):3 (1968), 349–360 | MR | Zbl

[7] Skvortsov V. A., Talalyan A. A., “Nekotorye voprosy edinstvennosti kratnykh ryadov po sisteme Khaara i trigonometricheskoi sisteme”, Matem. zametki, 13:3 (1973), 104–113 | MR

[8] Movsisyan Kh. O., “O edinstvennosti dvoinykh ryadov po sistemam Khaara i Uolsha”, Izv. AN ArmSSR. Ser. matem., 9:1 (1974), 40–61 | MR

[9] Plotnikov M. G., Obobschennye integraly i voprosy edinstvennosti dlya dvumernykh ryadov Khaara i Uolsha, Diss. ... kand. fiz.-matem. nauk, MGU, M., 2001

[10] Mushegyan G. M., “O mnozhestvakh edinstvennosti dlya sistemy Khaara”, Izv. AN ArmSSR. Ser. matem., 2:6 (1967), 350–361 | MR | Zbl

[11] Khausdorf F., Teoriya mnozhestv, ONTI, M., 1937

[12] Ostaszewski K. M., Henstock integration in the plane, Mem. Amer. Math. Soc., 63, no. 353, 1986 | MR

[13] Plotnikov M. G., “O edinstvennosti vsyudu skhodyaschikhsya kratnykh ryadov Khaara”, Vestn. MGU. Ser. 1. Matem., mekh., 2001, no. 1, 23–28 | MR | Zbl

[14] Plotnikov M. G., “O narushenii edinstvennosti dlya dvumernykh ryadov Khaara”, Vestn. MGU. Ser. 1. Matem., mekh., 2003, no. 4, 20–24 | MR | Zbl