Universal Karoubi characteristic classes of approximately finite algebras
Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 231-242 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The kernel of the Chern–Connes character is found for approximately finite and von Neumann algebras.
@article{SM_2005_196_2_a3,
     author = {I. M. Nikonov},
     title = {Universal {Karoubi} characteristic classes of approximately finite algebras},
     journal = {Sbornik. Mathematics},
     pages = {231--242},
     year = {2005},
     volume = {196},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_2_a3/}
}
TY  - JOUR
AU  - I. M. Nikonov
TI  - Universal Karoubi characteristic classes of approximately finite algebras
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 231
EP  - 242
VL  - 196
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_2_a3/
LA  - en
ID  - SM_2005_196_2_a3
ER  - 
%0 Journal Article
%A I. M. Nikonov
%T Universal Karoubi characteristic classes of approximately finite algebras
%J Sbornik. Mathematics
%D 2005
%P 231-242
%V 196
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2005_196_2_a3/
%G en
%F SM_2005_196_2_a3
I. M. Nikonov. Universal Karoubi characteristic classes of approximately finite algebras. Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 231-242. http://geodesic.mathdoc.fr/item/SM_2005_196_2_a3/

[1] Connes A., “$C^*$-algebres et geometrie differentielle”, C. R. Acad. Sci. Paris Sér. A, 290 (1980), 599–604 | MR | Zbl

[2] Karoubi M., Homologies cycliques et $K$-théorie, Astérisque, 149, Soc. Math. France, Paris, 1987 | MR | Zbl

[3] Zhuraev Yu. I., Kharakteristicheskie klassy modulei nad nekommutativnymi algebrami, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1987

[4] Zhuraev Yu. I., Mischenko A. S., Solovev Yu. P., “O kharakteristicheskikh klassakh v algebraicheskoi $K$-teorii”, Vestn. MGU. Ser. 1. Matem., mekh., 1986, no. 1, 75–76 | MR | Zbl

[5] Connes A., “Non-commutative differential geometry”, Inst. Hautes Études Sci. Publ. Math., 62 (1985), 41–144 | DOI | MR | Zbl

[6] Connes A., Noncommutative geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl

[7] Korneeva E. V., Kharakteristicheskie klassy v nekommutativnoi differentsialnoi geometrii, Diss. ... kand. fiz.-matem. nauk, MGU, M., 2003

[8] Khelemskii A. Ya., Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo MGU, M., 1986 | MR

[9] Connes A., “On the cohomology of operator algebras”, J. Funct. Anal., 28:2 (1978), 248–253 | DOI | MR | Zbl

[10] Haagerup U., “All nuclear $C^*$-algebras are amenable”, Invent. Math., 74:2 (1983), 305–319 | DOI | MR | Zbl

[11] Mërfi Dzh., $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997

[12] Davidson K. R., $C^*$-algebras by example, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[13] Lyumis L., Vvedenie v abstraktnyi garmonichekii analiz, IL, M., 1956

[14] Effros E. G., Shen S. L., “Approximately finite $C^*$-algebras and continued fractions”, Indiana Univ. Math. J., 29:2 (1980), 191–204 | DOI | MR | Zbl

[15] Dixmier J., Von Neumann algebras, North-Holland, Amsterdam, 1981 | MR | Zbl

[16] Blackadar A., $K$-theory for operator algebras, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl