Similarity and difference in the dynamics of plane and 3-dimensional non-linear waves
Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 201-229 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of quasinormal forms is used to demonstrate the mild loss of stability by travelling waves on a circle and a torus. The dynamics in the case of a small elastic-constraint coefficient is studied in a model example. The results obtained and an explicit difference scheme developed expressly for the problem are used in a series of numerical experiments. As a result one distinguishes a subdomain of the parameter space in which the most important features of the dynamics on a torus and a circle are related to self-organisation regimes, where self-organisation regimes on a circle are versions of certain similar regimes on a torus.
@article{SM_2005_196_2_a2,
     author = {Yu. S. Kolesov and A. E. Khar'kov},
     title = {Similarity and difference in the dynamics of plane and 3-dimensional non-linear waves},
     journal = {Sbornik. Mathematics},
     pages = {201--229},
     year = {2005},
     volume = {196},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_2_a2/}
}
TY  - JOUR
AU  - Yu. S. Kolesov
AU  - A. E. Khar'kov
TI  - Similarity and difference in the dynamics of plane and 3-dimensional non-linear waves
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 201
EP  - 229
VL  - 196
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_2_a2/
LA  - en
ID  - SM_2005_196_2_a2
ER  - 
%0 Journal Article
%A Yu. S. Kolesov
%A A. E. Khar'kov
%T Similarity and difference in the dynamics of plane and 3-dimensional non-linear waves
%J Sbornik. Mathematics
%D 2005
%P 201-229
%V 196
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2005_196_2_a2/
%G en
%F SM_2005_196_2_a2
Yu. S. Kolesov; A. E. Khar'kov. Similarity and difference in the dynamics of plane and 3-dimensional non-linear waves. Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 201-229. http://geodesic.mathdoc.fr/item/SM_2005_196_2_a2/

[1] Kolesov Yu. S., “Ustoichivost i bifurkatsiya beguschikh voln”, Nelineinye kolebaniya v zadachakh ekologii, ed. Yu. S. Kolesov, Izd-vo YarGU, Yaroslavl, 1985, 11–22 | MR

[2] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR

[3] Mischenko E. F., Kolesov Yu. S., Kolesov A. Yu., Rozov N. Kh., Periodicheskie dvizheniya i bifurkatsionnye protsessy v singulyarno vozmuschennykh sistemakh, Fizmatlit, M., 1995 | MR

[4] Kolesov Yu. S., “Asimptotika i ustoichivost nelineinykh parametricheskikh kolebanii singulyarno vozmuschennogo telegrafnogo uravneniya”, Matem. sb., 186:10 (1995), 57–72 | MR | Zbl

[5] Samoilenko A. M., Elementy matematicheskoi teorii mnogochastotnykh kolebanii. Invariantnye tory, Nauka, M., 1987 | MR

[6] Kolesov Yu. S., “Priroda bufernosti”, Matem. zametki, 74:2 (2003), 238–241 | MR | Zbl

[7] Malomed B. A., Scheuer J., “Stable and chaotic solutions of the complex Ginzburg–Landau equation with periodic boundary conditions”, Physica D, 161 (2002), 102–115 | DOI | MR | Zbl

[8] Kolesov Yu. S., Maiorov V. V., “Prostranstvennaya i vremennaya samoorganizatsiya v odnovidovom biotsenoze”, Dinamika biologicheskikh populyatsii, ed. V. D. Goryachenko, Izd-vo Gorkovskogo un-ta, Gorkii, 1986, 3–18

[9] Kolesov Yu. S., “Paradoksalnye svoistva attraktorov nelineinykh volnovykh uravnenii v ploskikh oblastyakh”, Dokl. RAN, 187:3 (2002), 443–445 | MR

[10] Kolesov Yu. S., “Osobennosti bifurkatsionnoi problemy dlya volnovogo uravneniya v uzkoi scheli”, Dokl. RAN, 367:4 (1999), 442–444 | MR | Zbl