Singularly perturbed integro-differential systems with contrast structures
Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 173-200 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An integro-differential system with an eigenvalue of the limiting operator of the differential part taking the value 0 is considered. An algorithm is developed allowing one to obtain asymptotic solutions (of an arbitrary order) by the method of normal forms. Contrast structures (internal transition layers) in solutions of the problem under consideration are investigated on the basis of the analysis of the leading term of the asymptotic solution. Contrast structures are shown to result from the instability of the spectrum of the limiting operator and the presence of an inhomogeneity. The role of the kernel of the integral operator in the development of contrast structures is also cleared up. In integral systems with diagonal degeneration of the kernel $(K(t,t)\equiv0)$ the integral term plays no role in the development of contrast structures and, conversely, if the kernel is non-degenerate, then it is significant for the development of contrast structures.
@article{SM_2005_196_2_a1,
     author = {A. A. Bobodzhanov and V. F. Safonov},
     title = {Singularly perturbed integro-differential systems with contrast structures},
     journal = {Sbornik. Mathematics},
     pages = {173--200},
     year = {2005},
     volume = {196},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_2_a1/}
}
TY  - JOUR
AU  - A. A. Bobodzhanov
AU  - V. F. Safonov
TI  - Singularly perturbed integro-differential systems with contrast structures
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 173
EP  - 200
VL  - 196
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_2_a1/
LA  - en
ID  - SM_2005_196_2_a1
ER  - 
%0 Journal Article
%A A. A. Bobodzhanov
%A V. F. Safonov
%T Singularly perturbed integro-differential systems with contrast structures
%J Sbornik. Mathematics
%D 2005
%P 173-200
%V 196
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2005_196_2_a1/
%G en
%F SM_2005_196_2_a1
A. A. Bobodzhanov; V. F. Safonov. Singularly perturbed integro-differential systems with contrast structures. Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 173-200. http://geodesic.mathdoc.fr/item/SM_2005_196_2_a1/

[1] Vasileva A. B., Butuzov V. F., Nefedov N. N., “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Fundament. i prikl. matem., 4:3 (1998), 799–851 | MR | Zbl

[2] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981 | MR

[3] Lomov S. A., Introduction to the general theory of singular perturbation, Transl. Math. Monogr., 112, Amer. Math. Soc., Providence, RI, 1992 | MR | Zbl

[4] Bobodzhanov A. A., Safonov V. F., “Vnutrennii perekhodnyi sloi v lineinoi zadache optimalnogo upravleniya”, Differents. uravneniya, 37:3 (2001), 310–322 | MR | Zbl

[5] Bobodzhanov A. A., Safonov V. F., “Integralnye uravneniya Volterra s bystro izmenyayuschimisya yadrami i ikh asimptoticheskoe integrirovanie”, Matem. sb., 192:8 (2001), 53–78 | MR | Zbl

[6] Safonov V. F., Kalimbetov B. T., “Metod regulyarizatsii dlya sistem s nestabilnym spektralnym znacheniem yadra integralnogo operatora”, Differents. uravneniya, 31:4 (1995), 696–706 | MR | Zbl

[7] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl