H\"older continuity of $p(x)$-harmonic functions
Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 147-171

Voir la notice de l'article provenant de la source Math-Net.Ru

The question on the Hölder continuity of solutions of the $p$-Laplace equation with measurable summability index $p=p(x)$ bounded away from one and infinity is studied. In the case when the domain of definition $D\subset\mathbb R$, $n\geqslant2$, of the equation is partitioned by a hyperplane $\Sigma$ into parts $D^{(1)}$ and $D^{(2)}$ such that $p(x)$ has a logarithmic modulus of continuity at a point $x_0\in D\cap\Sigma$ from either side it is proved that solutions of the equation are Hölder-continuous at $x_0$. The case when $p(x)$ has a logarithmic modulus of continuity in $D^{(1)}$ and $D^{(2)}$ is considered separately. It is proved that smooth functions in $D$ are dense in the class of solutions.
@article{SM_2005_196_2_a0,
     author = {Yu. A. Alkhutov},
     title = {H\"older continuity of $p(x)$-harmonic functions},
     journal = {Sbornik. Mathematics},
     pages = {147--171},
     publisher = {mathdoc},
     volume = {196},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_2_a0/}
}
TY  - JOUR
AU  - Yu. A. Alkhutov
TI  - H\"older continuity of $p(x)$-harmonic functions
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 147
EP  - 171
VL  - 196
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_2_a0/
LA  - en
ID  - SM_2005_196_2_a0
ER  - 
%0 Journal Article
%A Yu. A. Alkhutov
%T H\"older continuity of $p(x)$-harmonic functions
%J Sbornik. Mathematics
%D 2005
%P 147-171
%V 196
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_2_a0/
%G en
%F SM_2005_196_2_a0
Yu. A. Alkhutov. H\"older continuity of $p(x)$-harmonic functions. Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 147-171. http://geodesic.mathdoc.fr/item/SM_2005_196_2_a0/