Hölder continuity of $p(x)$-harmonic functions
Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 147-171 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The question on the Hölder continuity of solutions of the $p$-Laplace equation with measurable summability index $p=p(x)$ bounded away from one and infinity is studied. In the case when the domain of definition $D\subset\mathbb R$, $n\geqslant2$, of the equation is partitioned by a hyperplane $\Sigma$ into parts $D^{(1)}$ and $D^{(2)}$ such that $p(x)$ has a logarithmic modulus of continuity at a point $x_0\in D\cap\Sigma$ from either side it is proved that solutions of the equation are Hölder-continuous at $x_0$. The case when $p(x)$ has a logarithmic modulus of continuity in $D^{(1)}$ and $D^{(2)}$ is considered separately. It is proved that smooth functions in $D$ are dense in the class of solutions.
@article{SM_2005_196_2_a0,
     author = {Yu. A. Alkhutov},
     title = {H\"older continuity of $p(x)$-harmonic functions},
     journal = {Sbornik. Mathematics},
     pages = {147--171},
     year = {2005},
     volume = {196},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_2_a0/}
}
TY  - JOUR
AU  - Yu. A. Alkhutov
TI  - Hölder continuity of $p(x)$-harmonic functions
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 147
EP  - 171
VL  - 196
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_2_a0/
LA  - en
ID  - SM_2005_196_2_a0
ER  - 
%0 Journal Article
%A Yu. A. Alkhutov
%T Hölder continuity of $p(x)$-harmonic functions
%J Sbornik. Mathematics
%D 2005
%P 147-171
%V 196
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2005_196_2_a0/
%G en
%F SM_2005_196_2_a0
Yu. A. Alkhutov. Hölder continuity of $p(x)$-harmonic functions. Sbornik. Mathematics, Tome 196 (2005) no. 2, pp. 147-171. http://geodesic.mathdoc.fr/item/SM_2005_196_2_a0/

[1] Zhikov V. V., “Voprosy skhodimosti, dvoistvennosti i usredneniya dlya funktsionalov variatsionnogo ischisleniya”, Izv. AN SSSR. Ser. matem., 47:5 (1983), 961–995 | MR

[2] Zhikov V. V., “Usrednenie funktsionalov variatsionnogo ischisleniya i teorii uprugosti”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 675–711 | MR

[3] Zhikov V. V., “On some variatonal problems”, Russian J. Math. Phys., 5:1 (1996), 105–116 | MR

[4] Zhikov V. V., “Otsenki tipa Maiersa dlya resheniya nelineinoi sistemy Stoksa”, Differents. uravneniya, 33:1 (1997), 107–114 | MR | Zbl

[5] Ruzicka M., Electrorheological fluids: Modeling and mathematical theory, Lecture Notes in Math., 1748, Springer-Verlag, Berlin, 2000 | MR | Zbl

[6] Ladyzhenskaya O. A., Uraltseva N. N., “Kvazilineinye ellipticheskie uravneniya i variatsionnye zadachi so mnogimi nezavisimymi peremennymi”, UMN, 16:1 (1961), 19–90 | MR | Zbl

[7] Zhikov V. V., “On Lavrentiev's phenomenon”, Russian J. Math. Phys., 3:2 (1994), 249–269 | MR

[8] Fan Xian-Ling., A class of de Giorgi type and Hölder continuity of minimizers of variational with $m(x)$-growth condition, Preprint, Lanzhou Univ., Lanzhou, China, 1995 | MR

[9] Alkhutov Yu. A., “Neravenstvo Kharnaka i gëlderovost reshenii nelineinykh ellipticheskikh uravnenii s nestandartnym usloviem rosta”, Differents. uravneniya, 33:12 (1997), 1651–1660 | MR | Zbl

[10] Acerbi E., Fusco N., “A transmission problem in the calculus of variation”, Calc. Var. Partial Differential Equations, 2 (1994), 1–16 | DOI | MR | Zbl

[11] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993 | MR | Zbl

[12] Krasheninnikova O. V., “O nepreryvnosti v tochke reshenii ellipticheskikh uravnenii s nestandartnym usloviem rosta”, Trudy MIAN, 236, 2002, 204–212 | MR

[13] Moser J., “On Harnack's theorem for elliptic differential equations”, Comm. Pure Appl. Math., 14 (1961), 577–591 | DOI | MR | Zbl

[14] Fabes E. B., Stroock D. W., “The $L^p$-integrability of Green's functions and fundamental solutions for elliptic and parabolic equations”, Duke Math. J., 51:4 (1984), 99–1016 | DOI | MR

[15] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl