@article{SM_2005_196_1_a3,
author = {Yu. G. Prokhorov},
title = {On the degree of {Fano} threefolds with canonical {Gorenstein} singularities},
journal = {Sbornik. Mathematics},
pages = {77--114},
year = {2005},
volume = {196},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_1_a3/}
}
Yu. G. Prokhorov. On the degree of Fano threefolds with canonical Gorenstein singularities. Sbornik. Mathematics, Tome 196 (2005) no. 1, pp. 77-114. http://geodesic.mathdoc.fr/item/SM_2005_196_1_a3/
[1] Alexeev V., “General elephants of $\mathbb Q$-Fano 3-folds”, Compositio Math., 91 (1994), 91–116 | MR | Zbl
[2] Fano G., “Sulle varieta a tre dimensioni a curve-sezioni canoniche”, Acad. Ital. Mem. Cl. Sci. Fis. Mat. Nat., 8 (1937), 23–64 | Zbl
[3] Fano G., “Su alcune varieta algebriche a tre demensioni aventi curve-sezioni canoniche”, Scritti Mat. offerti a L. Berzolari., Pavia. Tip. Rossetti, 1936, 329–349 | Zbl
[4] Conte A., Murre J. P., “On the definition and on the nature of the singularities of Fano threefolds”, Rend. Sem. Mat. Univ. Politec. Torino, 44 (1986), 51–67 | MR
[5] Borisov A., “Boundedness of Fano threefolds with log-terminal singularities of given index”, J. Math. Sci. Univ. Tokyo, 8:2 (2001), 329–342 | MR | Zbl
[6] Cheltsov I. A., “Ogranichennost trekhmernykh mnogoobrazii Fano tselogo indeksa”, Matem. zametki, 66:3 (1999), 445–451 | MR | Zbl
[7] Namikawa Y., “Smoothing Fano 3-folds”, J. Algebraic Geom., 6 (1997), 307–324 | MR | Zbl
[8] Mukai S., “New developments in the theory of Fano threefolds: Vector bundle method and moduli problems”, Sugaku Expositions, 15:2 (2002), 125–150 | MR
[9] Iskovskikh V. A., “Antikanonicheskie modeli trekhmernykh algebraicheskikh mnogoobrazii”, Itogi nauki i tekhniki. Sovrem. problemy matem., 12, VINITI, M., 1979, 59–157 | MR
[10] Cheltsov I. A., “Trekhmernye algebraicheskie mnogoobraziya, obladayuschie divizorom s chislenno trivialnym kanonicheskim klassom”, UMN, 51:1 (1996), 177–178 | MR | Zbl
[11] Ishii S., “Quasi-Gorenstein Fano 3-folds with isolated nonrational loci”, Compositio Math., 77:3 (1991), 335–341 | MR | Zbl
[12] Conte A., Murre J. P., “Algebraic varieties of dimension three whose hyperplane sections are Enriques surfaces”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12 (1985), 43–80 | MR | Zbl
[13] Prokhorov Yu. G., “A remark on Fano threefolds with canonical Gorenstein singularities”, The Fano conference. Proceedings (Torino (Italy), 29 September–5 October 2002), eds. A. Collino et al., Univ. degli Studi di Torino, Torino, 2004 | MR | Zbl
[14] Kawamata Y., “The crepant blowing-up of 3-dimensional canonical singularities and its application to the degeneration of surfaces”, Ann. of Math. (2), 127 (1988), 93–163 | DOI | MR | Zbl
[15] Cutkosky S., “Elementary contractions of Gorenstein threefolds”, Math. Ann., 280 (1988), 521–525 | DOI | MR | Zbl
[16] Reid M., Projective morphisms according to Kawamata, Preprint, Univ. of Warwick, 1983 | MR
[17] Saint-Donat B., “Projective models of K3 surfaces”, Amer. J. Math., 96 (1974), 602–639 | DOI | MR | Zbl
[18] Shin K.-H., “3-dimensional Fano varieties with canonical singularities”, Tokyo J. Math., 12 (1989), 375–385 | MR | Zbl
[19] Jahnke P., Radloff I., Generatedness for Gorenstein Fano threefolds with canonical singularities, arXiv: math.AG/0404155
[20] Kollár J., Mori S., Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl
[21] Kollár J., “Singularities of pairs”, Proc. Sympos. Pure Math., 62 (1995), 221–287 | MR
[22] Shokurov V. V., “Trekhmernye log-perestroiki”, Izv. RAN. Ser. matem., 56:1 (1992), 105–201 | MR | Zbl
[23] Mori S., “Flip theorem and the existence of minimal models for 3-folds”, J. Amer. Math. Soc., 1 (1988), 117–253 | DOI | MR | Zbl
[24] Reid M., “Canonical 3-folds”, Journées de Géometrie Algébrique d'Angers, Juillet 1979 / Algebraic Geometry, Angers, Sijthoff Noordhof, 1979, 273–310 | MR
[25] Prokhorov Yu. G., Shokurov V. V., Toward the second main theorem on complements: from local to global, Preprint, 2000
[26] Mori S., “Threefolds whose canonical bundles are not numerically effective”, Ann. of Math. (2), 115 (1982), 133–176 | DOI | MR
[27] Mori S., Mukai S., “Classifications of Fano 3-folds with $B_2\geqslant 2$. I”, Algebraic and topological theories, Papers from the symposium dedicated to the memory of Dr. Takehiko Miyata (Kinosaki, October 30–November 9, 1984), Kinokuniya Company Ltd., Tokyo, 1986, 496–545 | MR | Zbl
[28] Prokhorov Yu. G., On $\mathbb Q$-Fano fiber spaces with two-dimensional base, Preprint No 95-33, Max-Planck-Institut, 1995
[29] Demin I. V., “Ogranichennost stepeni trekhmernykh mnogoobrazii Fano, predstavimykh v vide rassloenii na koniki”, UMN, 36:3 (1981), 203–204 | MR
[30] Sarkisov V. G., “O strukturakh rassloenii na koniki”, Izv. AN SSSR. Ser. matem., 46:2 (1982), 371–408 | MR | Zbl
[31] Sarkisov V. G., “Biratsionalnye avtomorfizmy rassloenii na koniki”, Izv. AN SSSR. Ser. matem., 44:4 (1980), 918–945 | MR | Zbl
[32] Iskovskikh V. A., “K probleme ratsionalnosti rassloenii na koniki”, Matem. sb., 182:1 (1991), 114–121 | MR | Zbl
[33] Iskovskikh V. A., Prokhorov Yu. G., “Fano varieties”, Encyclopaedia of mathematical sciences, Algebraic geometry. V, 47, eds. A. N. Parshin, I. R. Shafarevich, Springer-Verlag, Berlin, 1999 | MR | Zbl
[34] Sano T., “Classification of non-Gorenstein $\mathbb Q$-Fano $d$-folds of Fano index greater than $d-2$”, Nagoya Math. J., 142 (1996), 133–143 | MR | Zbl
[35] Fujita T., Classification theories of polarized varieties, London Math. Soc. Lecture Note Ser., 155, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[36] Fujita T., “On the structure of polarized varieties with $\Delta$-genera zero”, J. Fac. Sci. Univ Tokyo. Sec. IA, 22 (1975), 103–115 | MR | Zbl
[37] Matsumura H., Commutative ring theory, Cambridge Univ. Press., Cambridge, 1986 | MR | Zbl