Lieb–Thirring integral inequalities and their applications to attractors of the Navier–Stokes equations
Sbornik. Mathematics, Tome 196 (2005) no. 1, pp. 29-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Integral inequalities of Lieb–Thirring type and their generalizations are proved. All the corresponding constants are given in explicit form. Special attention is devoted to applications to the attractors of the two-dimensional Navier–Stokes equations. In particular, an explicit two-sided estimate of the attractor dimension is established for the Kolmogorov problem on the two-dimensional elongated torus.
@article{SM_2005_196_1_a1,
     author = {A. A. Ilyin},
     title = {Lieb{\textendash}Thirring integral inequalities and their applications to attractors of the {Navier{\textendash}Stokes} equations},
     journal = {Sbornik. Mathematics},
     pages = {29--61},
     year = {2005},
     volume = {196},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_1_a1/}
}
TY  - JOUR
AU  - A. A. Ilyin
TI  - Lieb–Thirring integral inequalities and their applications to attractors of the Navier–Stokes equations
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 29
EP  - 61
VL  - 196
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_1_a1/
LA  - en
ID  - SM_2005_196_1_a1
ER  - 
%0 Journal Article
%A A. A. Ilyin
%T Lieb–Thirring integral inequalities and their applications to attractors of the Navier–Stokes equations
%J Sbornik. Mathematics
%D 2005
%P 29-61
%V 196
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2005_196_1_a1/
%G en
%F SM_2005_196_1_a1
A. A. Ilyin. Lieb–Thirring integral inequalities and their applications to attractors of the Navier–Stokes equations. Sbornik. Mathematics, Tome 196 (2005) no. 1, pp. 29-61. http://geodesic.mathdoc.fr/item/SM_2005_196_1_a1/

[1] Lieb E., Thirring W., “Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities”, Studies in mathematical physics, Essays in honor of Valentine Bargmann, Princeton Univ. Press, Princeton, 1976, 269–303

[2] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, 4, Mir, M., 1982

[3] Netrusov Y., Weidl T., “On Lieb–Thirring inequalities for higher order operators with critical and subcritical powers”, Comm. Math. Phys., 182 (1996), 355–370 | DOI | MR | Zbl

[4] Birman M. Sh., Borzov V. V., “Ob asimptotike diskretnogo spektra nekotorykh singulyarnykh differentsialnykh operatorov”, Problemy matematicheskoi fiziki, 5, LGU, 1971, 24–38 | MR | Zbl

[5] Laptev A., Weidl T., “Sharp Lieb–Thirring inequalities in high dimensions”, Acta Math., 184 (2000), 87–111 | DOI | MR | Zbl

[6] Hundertmark D., Laptev A., Weidl T., “New bounds on the Lieb–Thirring constants”, Inv. Math., 140:3 (2000), 693–704 | DOI | MR | Zbl

[7] Lieb E., “On characteristic exponents in turbulence”, Comm. Math. Phys., 92 (1984), 473–480 | DOI | MR | Zbl

[8] Temam R., Infinite dimensional dynamical systems in mechanics and physics, Springer-Verlag, New York, 1997 | MR

[9] Constantin P., Foias C., “Global Lyapunov exponents, Kaplan–Yorke formulas and the dimension of the attractors for the 2D Navier–Stokes equations”, Comm. Pure Appl. Math., 38 (1985), 1–27 | DOI | MR | Zbl

[10] Ghidaglia J. M., Marion M., Temam R., “Generalization of the Sobolev–Lieb–Thirring inequalities and applications to the dimension of attractors”, Differential Integral Equations, 1 (1988), 1–21 | MR | Zbl

[11] Ilyin A. A., “Attractors for Navier–Stokes equations in domains with finite measure”, Nonlinear Anal., 27 (1996), 605–616 | DOI | MR | Zbl

[12] Ziane M., “Optimal bounds on the dimension of attractors for the Navier–Stokes equations”, Phys. D, 105 (1997), 1–19 | DOI | MR | Zbl

[13] Miranville A., Ziane M., “On the dimension of the attractor for the Benard problem with free surfaces”, Russian J. Math. Phys., 5 (1998), 489–502 | MR

[14] Constantin P., Foias C., Temam R., “On the dimension of the attractors in two-dimensional turbulence”, Phys. D, 30 (1988), 284–296 | DOI | MR | Zbl

[15] Eden A., Foias C., “A simple proof of the generalized Lieb–Thirring inequalities in one space dimension”, J. Math. Anal. Appl., 162 (1991), 250–254 | DOI | MR | Zbl

[16] Ilin A. A., “Tochnye postoyannye dlya odnogo klassa polimultiplikativnykh neravenstv dlya proizvodnykh”, Matem. sb., 189:9 (1998), 61–84 | MR

[17] Ilin A. A., “Chastichno dissipativnye polugruppy, porozhdaemye sistemoi Nave–Stoksa na dvumernykh mnogoobraziyakh, i ikh attraktory”, Matem. sb., 184:1 (1993), 55–88 | Zbl

[18] Ilyin A. A., “Lieb–Thirring inequalities on the $N$-sphere and in the plane, and some applications”, Proc. London Math. Soc. (3), 67 (1993), 159–182 | DOI | MR | Zbl

[19] Ghidaglia J. M., Temam R., “Lower bound on the dimension of the attractor for the Navier–Stokes equations in space dimension 3”, Mechanics, analysis and geometry: 200 years after Lagrange, eds. M. Francaviglia, D. Holmes, Elsevier, Amsterdam, 1991, 33–60 | MR

[20] Araki H., “On an inequality of Lieb and Thirring”, Lett. Math. Phys., 19 (1990), 167–170 | DOI | MR | Zbl

[21] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1988 | MR | Zbl

[22] Ladyzhenskaya O. A., Attractors for semigroups and evolution equations, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[23] Babin A. V., “Attractors of Navier–Stokes equations”, Handbook of mathematical fluid dynamics, vol. II, North-Holland, Amsterdam, 2003, 169–222 | MR | Zbl

[24] Meshalkin L. D., Sinai Ya. G., “Issledovanie ustoichivosti statsionarnogo resheniya odnoi sistemy uravnenii ploskogo dvizheniya neszhimaemoi vyazkoi zhidkosti”, Prikl. matem. i mekh., 25 (1961), 1140–1143 | MR | Zbl

[25] Yudovich V. I., “Primer rozhdeniya vtorichnogo statsionarnogo ili periodicheskogo techeniya pri potere ustoichivosti laminarnogo techeniya vyazkoi neszhimaemoi zhidkosti”, Prikl. matem. i mekh., 29 (1965), 453–467 | Zbl

[26] Chepyzhov V. V., Ilyin A. A., “On the fractal dimension of invariant sets; applications to Navier–Stokes equations”, Discrete Contin. Dynam. Systems, 10:12 (2004), 117–135 | MR | Zbl