Lieb--Thirring integral inequalities and their applications to attractors of the Navier--Stokes equations
Sbornik. Mathematics, Tome 196 (2005) no. 1, pp. 29-61

Voir la notice de l'article provenant de la source Math-Net.Ru

Integral inequalities of Lieb–Thirring type and their generalizations are proved. All the corresponding constants are given in explicit form. Special attention is devoted to applications to the attractors of the two-dimensional Navier–Stokes equations. In particular, an explicit two-sided estimate of the attractor dimension is established for the Kolmogorov problem on the two-dimensional elongated torus.
@article{SM_2005_196_1_a1,
     author = {A. A. Ilyin},
     title = {Lieb--Thirring integral inequalities and their applications to attractors of the {Navier--Stokes} equations},
     journal = {Sbornik. Mathematics},
     pages = {29--61},
     publisher = {mathdoc},
     volume = {196},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_1_a1/}
}
TY  - JOUR
AU  - A. A. Ilyin
TI  - Lieb--Thirring integral inequalities and their applications to attractors of the Navier--Stokes equations
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 29
EP  - 61
VL  - 196
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_1_a1/
LA  - en
ID  - SM_2005_196_1_a1
ER  - 
%0 Journal Article
%A A. A. Ilyin
%T Lieb--Thirring integral inequalities and their applications to attractors of the Navier--Stokes equations
%J Sbornik. Mathematics
%D 2005
%P 29-61
%V 196
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_1_a1/
%G en
%F SM_2005_196_1_a1
A. A. Ilyin. Lieb--Thirring integral inequalities and their applications to attractors of the Navier--Stokes equations. Sbornik. Mathematics, Tome 196 (2005) no. 1, pp. 29-61. http://geodesic.mathdoc.fr/item/SM_2005_196_1_a1/