Antipodes and embeddings
Sbornik. Mathematics, Tome 196 (2005) no. 1, pp. 1-28

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with maps without antipodal coincidence from spheres into compacta and polyhedra of a smaller dimension and to obstructions for embeddings of polyhedra and compacta in Euclidean spaces. Estimates of the dimension of the antipodal coincidence set are given for maps of spheres into compacta. The theory of the Yang homology index of spaces with involution is systematically expounded and developed in the case of a deleted square.
@article{SM_2005_196_1_a0,
     author = {A. Yu. Volovikov and E. V. Shchepin},
     title = {Antipodes and embeddings},
     journal = {Sbornik. Mathematics},
     pages = {1--28},
     publisher = {mathdoc},
     volume = {196},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_1_a0/}
}
TY  - JOUR
AU  - A. Yu. Volovikov
AU  - E. V. Shchepin
TI  - Antipodes and embeddings
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1
EP  - 28
VL  - 196
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_1_a0/
LA  - en
ID  - SM_2005_196_1_a0
ER  - 
%0 Journal Article
%A A. Yu. Volovikov
%A E. V. Shchepin
%T Antipodes and embeddings
%J Sbornik. Mathematics
%D 2005
%P 1-28
%V 196
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_1_a0/
%G en
%F SM_2005_196_1_a0
A. Yu. Volovikov; E. V. Shchepin. Antipodes and embeddings. Sbornik. Mathematics, Tome 196 (2005) no. 1, pp. 1-28. http://geodesic.mathdoc.fr/item/SM_2005_196_1_a0/