Antipodes and embeddings
Sbornik. Mathematics, Tome 196 (2005) no. 1, pp. 1-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with maps without antipodal coincidence from spheres into compacta and polyhedra of a smaller dimension and to obstructions for embeddings of polyhedra and compacta in Euclidean spaces. Estimates of the dimension of the antipodal coincidence set are given for maps of spheres into compacta. The theory of the Yang homology index of spaces with involution is systematically expounded and developed in the case of a deleted square.
@article{SM_2005_196_1_a0,
     author = {A. Yu. Volovikov and E. V. Shchepin},
     title = {Antipodes and embeddings},
     journal = {Sbornik. Mathematics},
     pages = {1--28},
     year = {2005},
     volume = {196},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_1_a0/}
}
TY  - JOUR
AU  - A. Yu. Volovikov
AU  - E. V. Shchepin
TI  - Antipodes and embeddings
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1
EP  - 28
VL  - 196
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_1_a0/
LA  - en
ID  - SM_2005_196_1_a0
ER  - 
%0 Journal Article
%A A. Yu. Volovikov
%A E. V. Shchepin
%T Antipodes and embeddings
%J Sbornik. Mathematics
%D 2005
%P 1-28
%V 196
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2005_196_1_a0/
%G en
%F SM_2005_196_1_a0
A. Yu. Volovikov; E. V. Shchepin. Antipodes and embeddings. Sbornik. Mathematics, Tome 196 (2005) no. 1, pp. 1-28. http://geodesic.mathdoc.fr/item/SM_2005_196_1_a0/

[1] Borsuk K., “Drei Sätze über $n$-dimensionale Sphäre”, Fund. Math., 20 (1933), 177–190 | Zbl

[2] Flores A., “Über $n$-dimensionale Komplexe die im $R_{2n+1}$ absolut selbstverschlungen sind”, Ergegb. Math. Kolloq., 6 (1933/34), 4–7

[3] Hopf H., “Freie Überdecckungen und frei Abbildungen”, Fund. Math., 28 (1937), 33–57 | Zbl

[4] Borsuk K., Teoriya retraktov, Mir, M., 1971 | MR

[5] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, MGU, M., 1976 | MR

[6] Conner H. E., Floyd E. E., Differentiable periodic maps, Springer-Verlag, Berlin, 1971

[7] Weber C., “Deux remarques sur les plongements d'un AR dans un espace euclidean”, Bull. Polish Acad. Sci. Math., 16 (1968), 851–855 | MR | Zbl

[8] Stesin M. I., “Ob aleksandrovskikh poperechnikakh sharov”, Dokl. AN SSSR, 217:1 (1974), 31–33 | MR | Zbl

[9] Schepin E. V., “Ob odnoi probleme L. A. Tumarkina”, Dokl. AN SSSR, 217:1 (1974), 42–43 | MR | Zbl

[10] Väisälä J., “A theorem of the Borsuk–Ulam type, for maps into non-manifolds”, Topology, 20 (1981), 319–322 | DOI | MR | Zbl

[11] Izydorek M., Jaworowski J., “Antipodal coincidence for maps of spheres into complexes”, Proc. Amer. Math. Soc., 123 (1995), 1947–1950 | DOI | MR | Zbl

[12] Bogatyi S. A., “$k$-regulyarnye otobrazheniya v evklidovy prostranstva i zadacha Borsuka–Boltyanskogo”, Matem. sb., 193:1 (2002), 73–82 | MR | Zbl

[13] Shklyarskii D. O., “O razbieniyakh dvumernoi sfery”, Matem. sb., 16(125) (1945), 125–128 | MR

[14] Jaworowski J., Existence of antipodal coincidence for maps of spheres, Preprint

[15] Jaworowski J., “Periodic coincidence for maps of spheres”, Kobe J. Math., 17 (2000), 21–26 | MR | Zbl

[16] Goncalves D. L., Jaworowski J., Pergher P. Q. L., “Measuring the size of the coincidence set”, Topology Appl., 125:3 (2002), 465–470 | DOI | MR | Zbl

[17] Van Kampen E. R., “Komplexe in euklidischen Raumen”, Abh. Math. Sem. Univ. Hamburg, 9 (1932), 72–78 | Zbl

[18] Grekhem R., Knut D., Patashnik O., Konkretnaya matematika, Mir, M., 1998

[19] Milnor Dzh., Stashef Dzh., Kharakteristicheskie klassy, Mir, M., 1979 | MR | Zbl

[20] Weber C., “Plongements de polyèders dans le domain metastable”, Comment. Math. Helv., 42:1–27 (1967), 851–855 | MR

[21] Bestvina M., Kapovich V., Kleiner B., Van Kampen's embedding obstruction for discrete groups, , 2000 arXiv:math.GT/0010141 | MR

[22] Repovš D., Skopenkov A. B., Ščepin E. V., “On embedding of $X \times I$ into Euclidean space”, Houston J. Math., 21 (1995), 199–204 | MR | Zbl

[23] Rokhlin V. A., Fuks D. B., Nachalnyi kurs topologii. Geometricheskie glavy, Nauka, M., 1977 | MR | Zbl

[24] Schepin E. V., “Myagkie otobrazheniya mnogoobrazii”, UMN, 39:5 (1984), 207–224

[25] Wu W. T., A theory of embedding, immersion and isotopy of polytopes in an Euclidean space, Science Press, Peking, 1965

[26] Ummel Brain R., “The product of nonplanar complexes does not imbed in 4-space”, Trans. Amer. Math. Soc., 242 (1978), 319–328 | DOI | MR | Zbl

[27] Skopenkov M., “Embedding product of graphs into Euclidean space”, Fund. Math., 179 (2003), 191–197 | DOI | MR

[28] Repovš D., Skopenkov A. B., Ščepin E. V., “On uncountable collection of continua and their span”, Colloq. Math., 69 (1995), 289–296 | MR | Zbl

[29] Conner P. E., Floyd E. E., “Fixed point free involutions and equivariant maps”, Bull. Amer. Math. Soc. (N. S.), 66 (1960), 416–441 | DOI | MR | Zbl

[30] Yang C. T., “On theorems of Borsuk–Ulam, Kakutani–Yamabe–Yujobô and Dyson. I”, Ann. of Math. (2), 60 (1954), 262–282 | DOI | MR | Zbl

[31] Bourgin D. G., “On some separation and mapping theorems”, Comment. Math. Helv., 29 (1955), 199–214 | DOI | MR | Zbl

[32] Daverman R. J., Decompositions of manifolds, Academic press, Orlando, 1986 | MR | Zbl

[33] Ingram W. T., “An uncountable collection of mutually exclusive planar atriodic tree-like continua with positive span”, Fund. Math., 85 (1974), 73–78 | MR | Zbl

[34] Repovsh D., Skopenkov A. B., “Novye rezultaty o vlozheniyakh poliedrov i mnogoobrazii v evklidovy prostranstva”, UMN, 54:6 (1999), 61–108 | MR | Zbl

[35] Volovikov A. Yu., “Tochki sovpadeniya otobrazhenii $\mathbb Z_p^k$-prostranstv v $CW$-kompleksy”, UMN, 57:1 (2002), 153–154 | MR | Zbl

[36] Volovikov A. Yu., “Otobrazheniya svobodnykh $\mathbb Z_p$-prostranstv v mnogoobraziya”, Izv. AN SSSR. Ser. matem., 46:1 (1982), 36–55 | MR | Zbl

[37] Volovikov A. Yu., “K teoreme van Kampena–Floresa”, Matem. zametki, 59:5 (1996), 663–670 | MR | Zbl

[38] Stefanov S. T., “Yang index of the deleted product”, Proc. Amer. Math. Soc., 128:3 (1999), 885–891 | DOI | MR