Non-nuclear perturbations of discrete operators and trace formulae
Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1841-1874

Voir la notice de l'article provenant de la source Math-Net.Ru

A trace formula is obtained for unbounded discrete operators perturbed by a Hilbert–Schmidt operator; this formula may be called the discrete analogue of M. Krein's formula for nuclear perturbations. A regularized trace formula of Krein's type is also proved for perturbations in the class $S^p$, $2$, for arbitrary compact and relatively compact perturbations depending on the behaviour at infinity of the distribution function of the spectrum of the unperturbed operator.
@article{SM_2005_196_12_a4,
     author = {Kh. Kh. Murtazin and Z. Yu. Fazullin},
     title = {Non-nuclear perturbations of discrete operators and trace formulae},
     journal = {Sbornik. Mathematics},
     pages = {1841--1874},
     publisher = {mathdoc},
     volume = {196},
     number = {12},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_12_a4/}
}
TY  - JOUR
AU  - Kh. Kh. Murtazin
AU  - Z. Yu. Fazullin
TI  - Non-nuclear perturbations of discrete operators and trace formulae
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1841
EP  - 1874
VL  - 196
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_12_a4/
LA  - en
ID  - SM_2005_196_12_a4
ER  - 
%0 Journal Article
%A Kh. Kh. Murtazin
%A Z. Yu. Fazullin
%T Non-nuclear perturbations of discrete operators and trace formulae
%J Sbornik. Mathematics
%D 2005
%P 1841-1874
%V 196
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_12_a4/
%G en
%F SM_2005_196_12_a4
Kh. Kh. Murtazin; Z. Yu. Fazullin. Non-nuclear perturbations of discrete operators and trace formulae. Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1841-1874. http://geodesic.mathdoc.fr/item/SM_2005_196_12_a4/