Non-nuclear perturbations of discrete operators and trace formulae
Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1841-1874
Voir la notice de l'article provenant de la source Math-Net.Ru
A trace formula is obtained for unbounded discrete operators perturbed by a Hilbert–Schmidt operator; this formula may be called the discrete analogue of M. Krein's formula for nuclear perturbations. A regularized trace formula of Krein's type is also proved for perturbations in the class $S^p$, $2$, for arbitrary compact and relatively compact perturbations depending on the behaviour at infinity of the distribution function of the spectrum of the unperturbed operator.
@article{SM_2005_196_12_a4,
author = {Kh. Kh. Murtazin and Z. Yu. Fazullin},
title = {Non-nuclear perturbations of discrete operators and trace formulae},
journal = {Sbornik. Mathematics},
pages = {1841--1874},
publisher = {mathdoc},
volume = {196},
number = {12},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_12_a4/}
}
TY - JOUR AU - Kh. Kh. Murtazin AU - Z. Yu. Fazullin TI - Non-nuclear perturbations of discrete operators and trace formulae JO - Sbornik. Mathematics PY - 2005 SP - 1841 EP - 1874 VL - 196 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2005_196_12_a4/ LA - en ID - SM_2005_196_12_a4 ER -
Kh. Kh. Murtazin; Z. Yu. Fazullin. Non-nuclear perturbations of discrete operators and trace formulae. Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1841-1874. http://geodesic.mathdoc.fr/item/SM_2005_196_12_a4/