Non-nuclear perturbations of discrete operators and trace formulae
Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1841-1874 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A trace formula is obtained for unbounded discrete operators perturbed by a Hilbert–Schmidt operator; this formula may be called the discrete analogue of M. Krein's formula for nuclear perturbations. A regularized trace formula of Krein's type is also proved for perturbations in the class $S^p$, $2, for arbitrary compact and relatively compact perturbations depending on the behaviour at infinity of the distribution function of the spectrum of the unperturbed operator.
@article{SM_2005_196_12_a4,
     author = {Kh. Kh. Murtazin and Z. Yu. Fazullin},
     title = {Non-nuclear perturbations of discrete operators and trace formulae},
     journal = {Sbornik. Mathematics},
     pages = {1841--1874},
     year = {2005},
     volume = {196},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_12_a4/}
}
TY  - JOUR
AU  - Kh. Kh. Murtazin
AU  - Z. Yu. Fazullin
TI  - Non-nuclear perturbations of discrete operators and trace formulae
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1841
EP  - 1874
VL  - 196
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_12_a4/
LA  - en
ID  - SM_2005_196_12_a4
ER  - 
%0 Journal Article
%A Kh. Kh. Murtazin
%A Z. Yu. Fazullin
%T Non-nuclear perturbations of discrete operators and trace formulae
%J Sbornik. Mathematics
%D 2005
%P 1841-1874
%V 196
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2005_196_12_a4/
%G en
%F SM_2005_196_12_a4
Kh. Kh. Murtazin; Z. Yu. Fazullin. Non-nuclear perturbations of discrete operators and trace formulae. Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1841-1874. http://geodesic.mathdoc.fr/item/SM_2005_196_12_a4/

[1] Krein M. G., “O formule sledov v teorii vozmuschenii”, Matem. sb., 33 (75):3 (1953), 597–626 | MR | Zbl

[2] Birman M. Sh., Yafaev D. R., “Funktsiya spektralnogo sdviga. Raboty M. G. Kreina i ikh dalneishee razvitie”, Algebra i analiz, 4:5 (1992), 1–44 | MR | Zbl

[3] Adamyan V. M., Pavlov B. S., “Formula sledov dlya dissipativnykh operatorov”, Vestn. LGU. Ser. matem., 1979, no. 2, 5–9 | MR | Zbl

[4] Sadovnichii V. A., Dubrovskii V. V., “Ob odnoi abstraktnoi teoreme teorii vozmuschenii, o formulakh regulyarizovannykh sledov i o dzeta-funktsii operatorov”, Differents. uravneniya, 13:7 (1977), 1264–1271 | MR | Zbl

[5] Sadovnichii V. A., Lyubishkin V. A., “Konechnomernye vozmuscheniya diskretnykh operatorov i formula sledov”, Funkts. analiz i ego prilozh., 20:3 (1986), 55–65 | MR

[6] Dubrovskii V. V., “Formuly regulyarizovannykh sledov operatorov s kompaktnoi rezolventoi”, Differents. uravneniya, 26:12 (1990), 2046–2051 | MR | Zbl

[7] Dostanic M., “Trace formula for nonnuclear perturbations of selfadjoint operators”, Publ. Inst. Math. (Beograd) (N.S.), 54 (68) (1993), 71–79 | MR | Zbl

[8] Sadovnichii V. A., Podolskii V. E., “Sledy operatorov s otnositelno kompaktnym vozmuscheniem”, Matem. sb., 193:2 (2002), 129–152 | MR

[9] Koplienko L. S., “O formule sledov dlya vozmuschenii neyadernogo tipa”, Sib. matem. zhurn., 25:5 (1984), 62–71 | MR | Zbl

[10] Dostanic M., “Trace formulas of Gelfand–Levitan type”, Publ. Inst. Math. (Beograd) (N.S.), 55 (69) (1994), 51–63 | MR | Zbl

[11] Murtazin Kh. Kh., Fazullin Z. Yu., “O formulakh sledov dlya neyadernykh vozmuschenii”, Dokl. RAN, 368:4 (1999), 442–444 | MR | Zbl

[12] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[13] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, Fizmatlit, M., 1965 | MR

[14] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR

[15] Gasymov M. G., “O summe raznostei sobstvennykh znachenii dvukh samosopryazhennykh operatorov”, Dokl. AN SSSR, 150:6 (1963), 1202–1205 | MR | Zbl

[16] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[17] Danford N., Shvarts Dzh., Lineinye operatory. T. 2, Mir, M., 1966

[18] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, Fizmatlit, M., 1978 | MR

[19] Dubrovskii V. V., Puzankova E. A., “Otsenka raznosti spektralnykh funktsii i formuly regulyarizovannykh sledov stepeni operatora Laplasa, zadannogo na treugolnike ili kvadrate v $L^p$, $1\le p\le2$”, Differents. uravneniya, 35:4 (1999), 552–555 | MR | Zbl

[20] Dikii L. A., “Formuly sledov dlya differentsialnykh operatorov Shturma–Liuvillya”, UMN, 13:3 (1958), 111–143 | MR | Zbl

[21] Sadovnichii V. A., Dubrovskii V. V., “Klassicheskaya formula regulyarizovannogo sleda dlya sobstvennykh chisel operatora Laplasa–Beltrami s potentsialom na sfere $S^2$”, Dokl. AN SSSR, 319:1 (1991), 61–62 | MR

[22] Podolskii V. E., “Formula regulyarizovannogo sleda operatora Laplasa–Beltrami s nechetnym potentsialom na sfere $S^2$”, Matem. zametki, 56:1 (1994), 71–77 | MR | Zbl

[23] Fazullin Z. Yu., “Formula regulyarizovannogo sleda dlya vozmuscheniya operatora Laplasa–Beltrami”, Mezhdunarodnaya konferentsiya po kompleksnomu analizu i smezhnym voprosam, Tezisy dokladov (2–5 iyunya 1997, Nizhegorodskii gosudarstvennyi universitet), Izd-vo NNGU, Nizhnii Novgorod, 1997, 80–81

[24] Sadovnichii V. A., Fazullin Z. Yu., “Formula pervogo regulyarizovannogo sleda dlya operatora Laplasa–Beltrami”, Differents. uravneniya, 37:3 (2001), 402–409 | MR

[25] Fazullin Z. Yu., Murtazin Kh. Kh., “Regulyarizovannyi sled dvumernogo garmonicheskogo ostsillyatora”, Matem. sb., 192:5 (2001), 87–124 | MR | Zbl