@article{SM_2005_196_12_a3,
author = {V. G. Lysov},
title = {Strong asymptotics of the {Hermite{\textendash}Pad\'e} approximants for a system of {Stieltjes} functions with {Laguerre} weight},
journal = {Sbornik. Mathematics},
pages = {1815--1840},
year = {2005},
volume = {196},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_12_a3/}
}
TY - JOUR AU - V. G. Lysov TI - Strong asymptotics of the Hermite–Padé approximants for a system of Stieltjes functions with Laguerre weight JO - Sbornik. Mathematics PY - 2005 SP - 1815 EP - 1840 VL - 196 IS - 12 UR - http://geodesic.mathdoc.fr/item/SM_2005_196_12_a3/ LA - en ID - SM_2005_196_12_a3 ER -
V. G. Lysov. Strong asymptotics of the Hermite–Padé approximants for a system of Stieltjes functions with Laguerre weight. Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1815-1840. http://geodesic.mathdoc.fr/item/SM_2005_196_12_a3/
[1] Gonchar A. A., Rakhmanov E. A., “O skhodimosti sovmestnykh approksimatsii Pade dlya sistemy funktsii markovskogo tipa”, Trudy MIAN, 157, 1981, 31–48 | MR | Zbl
[2] Nikishin E. M., Sorokin V. N., Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl
[3] Aptekarev A. I., Branquinho A., Van Assche W., “Multiple orthogonal polynomials for classical weights”, Trans. Amer. Math. Soc., 355 (2003), 3887–3914 | DOI | MR | Zbl
[4] Sorokin V. N., “Skhodimost sovmestnykh approksimatsii Pade k funktsiyam stiltesovskogo tipa”, Izv. vuzov. Ser. matem., 1987, no. 7, 48–56 | MR | Zbl
[5] Nuttall J., “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl
[6] Deift P., Zhou X., “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for MKdV equation”, Ann. of Math. (2), 137:2 (1993), 295–368 | DOI | MR | Zbl
[7] Van Assche W., Geronimo J. S., Kuijlaars A. B. J., “Riemann–Hilbert problems for multiple orthogonal polynomials”, Special functions 2000: Current perspective and future directions (Tempe, AZ), eds. J. Bustoz et al., Kluwer Acad. Publ., Dordrecht, 2001, 23–59 | MR | Zbl
[8] Gonchar A. A., Rakhmanov E. A., Sorokin V. N., “Ob approksimatsiyakh Ermita–Pade dlya sistem funktsii markovskogo tipa”, Matem. sb., 188:5 (1997), 33–58 | MR | Zbl
[9] Kuijlaars A. B. J., McLaughlin K. T.-R., Van Assche W., Vanlessen M., “The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on $[-1,1]$”, Adv. Math., 188 (2004), 337–398 | DOI | MR | Zbl
[10] Aptekarev A. I., Van Assche W., “Scalar and matrix Riemann–Hilbert approach to the strong asymptotics of Padé approximants and complex orthogonal polynomials with varying weight”, J. Approx. Theory, 129 (2004), 129–166 | DOI | MR | Zbl
[11] Kuijlaars A. B. J., Van Assche W., Wielonsky F., “Quadratic Hermite–Padé approximation to the exponential function: a Riemann–Hilbert approach”, Constr. Approx., 21:3 (2005), 351–412 | DOI | MR | Zbl