Strong asymptotics of the Hermite--Pad\'e approximants for a system of Stieltjes functions with Laguerre weight
Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1815-1840
Voir la notice de l'article provenant de la source Math-Net.Ru
The Hermite–Padé approximants with common denominator are considered for a pair of Stieltjes functions with weights $x^\alpha e^{-\beta_1x}$ and $x^\alpha e^{-\beta_2x}$, where $\alpha>-1$, $\beta_2>\beta_1>0$. On the basis of the method of the Riemann–Hilbert matrix problem the strong asymptotics of these approximants are found in the case $\beta_2/\beta_13+2\sqrt2$. The limiting distribution of the zeros of the denominators of the Hermite–Padé approximants is shown to be equal to the equilibrium measure of a certain Nikishin system.
@article{SM_2005_196_12_a3,
author = {V. G. Lysov},
title = {Strong asymptotics of the {Hermite--Pad\'e} approximants for a system of {Stieltjes} functions with {Laguerre} weight},
journal = {Sbornik. Mathematics},
pages = {1815--1840},
publisher = {mathdoc},
volume = {196},
number = {12},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_12_a3/}
}
TY - JOUR AU - V. G. Lysov TI - Strong asymptotics of the Hermite--Pad\'e approximants for a system of Stieltjes functions with Laguerre weight JO - Sbornik. Mathematics PY - 2005 SP - 1815 EP - 1840 VL - 196 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2005_196_12_a3/ LA - en ID - SM_2005_196_12_a3 ER -
V. G. Lysov. Strong asymptotics of the Hermite--Pad\'e approximants for a system of Stieltjes functions with Laguerre weight. Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1815-1840. http://geodesic.mathdoc.fr/item/SM_2005_196_12_a3/