Absolute completeness of systems of exponentials on convex compact sets
Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1801-1814

Voir la notice de l'article provenant de la source Math-Net.Ru

Approximation using linear combinations of exponentials with special constraints on the coefficients is investigated. A sufficient condition for such approximation is stated in simple geometric terms.
@article{SM_2005_196_12_a2,
     author = {I. F. Krasichkov-Ternovskii and G. N. Shilova},
     title = {Absolute completeness of systems of exponentials on convex compact sets},
     journal = {Sbornik. Mathematics},
     pages = {1801--1814},
     publisher = {mathdoc},
     volume = {196},
     number = {12},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_12_a2/}
}
TY  - JOUR
AU  - I. F. Krasichkov-Ternovskii
AU  - G. N. Shilova
TI  - Absolute completeness of systems of exponentials on convex compact sets
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1801
EP  - 1814
VL  - 196
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_12_a2/
LA  - en
ID  - SM_2005_196_12_a2
ER  - 
%0 Journal Article
%A I. F. Krasichkov-Ternovskii
%A G. N. Shilova
%T Absolute completeness of systems of exponentials on convex compact sets
%J Sbornik. Mathematics
%D 2005
%P 1801-1814
%V 196
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_12_a2/
%G en
%F SM_2005_196_12_a2
I. F. Krasichkov-Ternovskii; G. N. Shilova. Absolute completeness of systems of exponentials on convex compact sets. Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1801-1814. http://geodesic.mathdoc.fr/item/SM_2005_196_12_a2/