Absolute completeness of systems of exponentials on convex compact sets
Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1801-1814
Voir la notice de l'article provenant de la source Math-Net.Ru
Approximation using linear combinations of exponentials with special constraints on the coefficients is investigated. A sufficient condition for such approximation is stated in simple geometric terms.
@article{SM_2005_196_12_a2,
author = {I. F. Krasichkov-Ternovskii and G. N. Shilova},
title = {Absolute completeness of systems of exponentials on convex compact sets},
journal = {Sbornik. Mathematics},
pages = {1801--1814},
publisher = {mathdoc},
volume = {196},
number = {12},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_12_a2/}
}
TY - JOUR AU - I. F. Krasichkov-Ternovskii AU - G. N. Shilova TI - Absolute completeness of systems of exponentials on convex compact sets JO - Sbornik. Mathematics PY - 2005 SP - 1801 EP - 1814 VL - 196 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2005_196_12_a2/ LA - en ID - SM_2005_196_12_a2 ER -
I. F. Krasichkov-Ternovskii; G. N. Shilova. Absolute completeness of systems of exponentials on convex compact sets. Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1801-1814. http://geodesic.mathdoc.fr/item/SM_2005_196_12_a2/