Stabilization rate and stability for viscous compressible barotropic symmetric flows with free boundary for a general mass force
Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1745-1799 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider symmetric flows of a viscous compressible barotropic fluid with free boundary driven by a general mass force $f_S$ (depending on both the Eulerian and the Lagrangian coordinates) and an outer pressure $p_{\Gamma,S}$, for a general monotone state function $p$. The case of self-gravitation arising in astrophysics is covered. Studied first are the existence, the uniqueness, and the static stability of positive stationary solutions; a variational study of these solutions and their static stability in terms of potential energy is presented. In the astrophysical context it is proved that the stationary solution is unique and statically stable, provided that the first adiabatic exponent is at least 4/3. Next, in the case when the $\omega$-limit set for the non-stationary density and free boundary contains a statically stable positive stationary solution a uniform stabilization to this solution is deduced and, as the main result, stabilization-rate bounds of exponential type as $t\to\infty$ in $L^2$ and $H^1$ for the density and the velocity are established by constructing new non-trivial Lyapunov functionals for the problem. Moreover, it is proved that statically stable stationary solutions are exponentially asymptotically stable, and this non-linear dynamic stability is in addition stable with respect to small non-stationary perturbations of $f_S$ and $p_{\Gamma,S}$. A variational condition for the stationary solution is also introduced, which ensures global (with respect to the data) dynamic stability. The study is accomplished in the Eulerian coordinates and in the Lagrangian mass coordinates alike.
@article{SM_2005_196_12_a1,
     author = {A. A. Zlotnik and B. Ducomet},
     title = {Stabilization rate and stability for viscous compressible barotropic symmetric flows with free boundary for a~general mass force},
     journal = {Sbornik. Mathematics},
     pages = {1745--1799},
     year = {2005},
     volume = {196},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_12_a1/}
}
TY  - JOUR
AU  - A. A. Zlotnik
AU  - B. Ducomet
TI  - Stabilization rate and stability for viscous compressible barotropic symmetric flows with free boundary for a general mass force
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1745
EP  - 1799
VL  - 196
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_12_a1/
LA  - en
ID  - SM_2005_196_12_a1
ER  - 
%0 Journal Article
%A A. A. Zlotnik
%A B. Ducomet
%T Stabilization rate and stability for viscous compressible barotropic symmetric flows with free boundary for a general mass force
%J Sbornik. Mathematics
%D 2005
%P 1745-1799
%V 196
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2005_196_12_a1/
%G en
%F SM_2005_196_12_a1
A. A. Zlotnik; B. Ducomet. Stabilization rate and stability for viscous compressible barotropic symmetric flows with free boundary for a general mass force. Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1745-1799. http://geodesic.mathdoc.fr/item/SM_2005_196_12_a1/

[1] Chandrasekkhar S., Vvedenie v uchenie o stroenii zvezd, IL, M., 1950

[2] Ledoux P., “Stellar stability”, Handbuch der Physik, 51, Springer-Verlag, Berlin, 1958, 605–688

[3] Ledoux P., “Stellar stability”, Stars and stellar structure, ed. L. H. Aller et al., Univ. Chicago Press, Chicago, 1965, 499–574

[4] Chiu H.-Y., Stellar physics, I, Waltham, Blaisdell, 1968

[5] Huntley J. M., Saslaw W. C., “The distribution of stars in galactic nuclei: loaded polytropes”, Astrophys. J., 199 (1975), 328–335 | DOI

[6] Kimura H., “A study of simple polytropes. Parts I, II”, Publ. Astron. Soc. Japan., 33 (1981), 273–298 ; 299–312

[7] Ducomet B., “Hydrodynamical models of gaseous stars”, Rev. Math. Phys., 8 (1996), 957–1000 | DOI | MR | Zbl

[8] Lin S. S., “Stability of gaseous stars in spherically symmetric motions”, SIAM J. Math. Anal., 28 (1997), 539–569 | DOI | MR | Zbl

[9] Heinzle J. M., Uggla C., “Newtonian stellar models”, Ann. Physics, 308:1 (2003), 18–61 | DOI | MR | Zbl

[10] Ducomet B., Zlotnik A., “Viscous compressible barotropic symmetric flows with free boundary under general mass force. Part I: Uniform-in-time bounds and stabilization”, Math. Methods Appl. Sci., 28 (2005), 827–863 | DOI | MR | Zbl

[11] Zlotnik A. A., Dyukome B., “Globalnoe povedenie simmetrichnykh techenii vyazkoi szhimaemoi barotropnoi zhidkosti so svobodnoi granitsei dlya obschei massovoi sily”, Dokl. RAN, 398:4 (2004), 444–448 | MR

[12] Kuan W. C., Lin S. S., “Numbers of equilibria for the equation of self-gravitating isentropic gas surrounding a solid ball”, Japan J. Indust. Appl. Math., 13 (1996), 311–331 | MR | Zbl

[13] Fu C. C., Lin S. S., “On the critical mass of the collapse of a gaseous star in spherically symmetric and isentropic motion”, Japan J. Indust. Appl. Math., 15 (1998), 461–469 | MR | Zbl

[14] Strömer G., Zajaczkowski W., “On the existence and properties of the rotationally symmetric equilibrium states of compressible barotropic self-gravitating fluids”, Indiana Univ. Math. J., 46 (1997), 1181–1220 | MR

[15] Zlotnik A. A., Dyukome B., “Zadacha simmetrichnogo ravnovesiya szhimaemoi barotropnoi zhidkosti so svobodnoi granitsei dlya obschei massovoi sily”, Dokl. RAN, 401:2 (2005), 154–159 | MR

[16] Zlotnik A. A., Dyukome B., “Funktsionaly Lyapunova simmetrichnykh techenii vyazkoi szhimaemoi barotropnoi zhidkosti so svobodnoi granitsei dlya obschei massovoi sily”, Dokl. RAN, 402:1 (2005), 14–19 | MR

[17] Zlotnik A. A., Nguen Zha Bao., “Svoistva i asimptoticheskoe povedenie reshenii odnoi zadachi odnomernogo dvizheniya vyazkogo barotropnogo gaza”, Matem. zametki, 55:5 (1994), 51–68 | MR | Zbl

[18] Zlotnik A. A., “Ob uravneniyakh odnomernogo dvizheniya vyazkogo barotropnogo gaza pri nalichii massovoi sily”, Sib. matem. zhurn., 33:5 (1992), 62–79 | MR | Zbl

[19] Mucha P., “Compressible Navier–Stokes system in 1-D”, Math. Methods Appl. Sci., 21 (2001), 607–622 | DOI | MR

[20] Matsumura A., Yanagi S., “Uniform boundedness of the solutions for a one-dimensional isentropic model system of a compressible viscous gas”, Comm. Math. Phys., 175 (1996), 259–274 | DOI | MR | Zbl

[21] Straškraba I., Zlotnik A., “Global behavior of 1d-viscous compressible barotropic fluid with a free boundary and large data”, J. Math. Fluid Mech., 5 (2003), 119–143 ; “Erratum”, 6 (2004), 249–250 | MR | Zbl | DOI | MR

[22] Zlotnik A., “Global behaviour of 1-D viscous compressible barotropic flows with free boundary and self-gravitation”, Math. Methods Appl. Sci., 26 (2003), 671–690 | DOI | MR | Zbl

[23] Zlotnik A. A., “Ob odnoi zadache Nishida”, ZhVM i MF, 38:8 (1998), 1279–1286 | MR | Zbl

[24] Zlotnik A. A., Nguen Zha Bao., “Globalnye svoistva simmetrichnykh reshenii zadachi dvizheniya vyazkogo barotropnogo gaza so svobodnoi granitsei”, Vestn. MEI, 5:6 (1998), 52–61

[25] Zlotnik A. A., “Ravnomernye otsenki i stabilizatsiya simmetrichnykh reshenii odnoi kvazilineinoi sistemy uravnenii”, Differents. uravneniya, 36:5 (2000), 634–646 | MR | Zbl

[26] Zlotnik A. A., “Global properties of a difference approximation of the free boundary problem for a symmetric motion of a viscous barotropic gas”, Russian J. Numer. Anal. Math. Modelling, 14 (1999), 527–548 | MR | Zbl

[27] Matsumura A., “Large-time behavior of the spherically symmetric solutions of an isothermal model of compressible viscous gas”, Transp. Theory Statist. Phys., 21 (1992), 579–592 | DOI | MR | Zbl

[28] Yanagi S., “Asymptotic stability of the spherically symmetric solutions for an isentropic model of compressible viscous gas”, Japan J. Indust. Appl. Math., 14 (1997), 215–243 | MR

[29] Matušu-Nečasova Š., Okada M., Makino T., “Free boundary problem for the equation of spherically symmetric motion of a viscous gas. III”, Japan J. Indust. Appl. Math., 14 (1997), 199–213 | MR

[30] Ducomet B., “Some asymptotics for a reactive Navier–Stokes–Poisson system”, Math. Models Methods. Appl. Sci., 9 (1999), 1039–1076 | DOI | MR | Zbl

[31] Khartman P., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[32] Penel P., Straškraba I., “Global behavior of compressible fluid with a free boundary and large data”, Applied nonlinear analysis, eds. A. Sequeira et al., Kluwer Academic, New York, 1999, 427–442 | MR | Zbl

[33] Zlotnik A. A., Maksimov M. V., “On symmetric equilibrium of an isothermal gas with a free boundary and a body force”, Abstr. Appl. Anal., 2006, Art. ID 69347, 12 pp. | MR

[34] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[35] Ducomet B., Zlotnik A., “Remark on the stabilization of a viscous barotropic medium with a nonmonotone equation of state”, Appl. Math. Lett., 14 (2001), 921–928 | DOI | MR