@article{SM_2005_196_12_a1,
author = {A. A. Zlotnik and B. Ducomet},
title = {Stabilization rate and stability for viscous compressible barotropic symmetric flows with free boundary for a~general mass force},
journal = {Sbornik. Mathematics},
pages = {1745--1799},
year = {2005},
volume = {196},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_12_a1/}
}
TY - JOUR AU - A. A. Zlotnik AU - B. Ducomet TI - Stabilization rate and stability for viscous compressible barotropic symmetric flows with free boundary for a general mass force JO - Sbornik. Mathematics PY - 2005 SP - 1745 EP - 1799 VL - 196 IS - 12 UR - http://geodesic.mathdoc.fr/item/SM_2005_196_12_a1/ LA - en ID - SM_2005_196_12_a1 ER -
%0 Journal Article %A A. A. Zlotnik %A B. Ducomet %T Stabilization rate and stability for viscous compressible barotropic symmetric flows with free boundary for a general mass force %J Sbornik. Mathematics %D 2005 %P 1745-1799 %V 196 %N 12 %U http://geodesic.mathdoc.fr/item/SM_2005_196_12_a1/ %G en %F SM_2005_196_12_a1
A. A. Zlotnik; B. Ducomet. Stabilization rate and stability for viscous compressible barotropic symmetric flows with free boundary for a general mass force. Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1745-1799. http://geodesic.mathdoc.fr/item/SM_2005_196_12_a1/
[1] Chandrasekkhar S., Vvedenie v uchenie o stroenii zvezd, IL, M., 1950
[2] Ledoux P., “Stellar stability”, Handbuch der Physik, 51, Springer-Verlag, Berlin, 1958, 605–688
[3] Ledoux P., “Stellar stability”, Stars and stellar structure, ed. L. H. Aller et al., Univ. Chicago Press, Chicago, 1965, 499–574
[4] Chiu H.-Y., Stellar physics, I, Waltham, Blaisdell, 1968
[5] Huntley J. M., Saslaw W. C., “The distribution of stars in galactic nuclei: loaded polytropes”, Astrophys. J., 199 (1975), 328–335 | DOI
[6] Kimura H., “A study of simple polytropes. Parts I, II”, Publ. Astron. Soc. Japan., 33 (1981), 273–298 ; 299–312
[7] Ducomet B., “Hydrodynamical models of gaseous stars”, Rev. Math. Phys., 8 (1996), 957–1000 | DOI | MR | Zbl
[8] Lin S. S., “Stability of gaseous stars in spherically symmetric motions”, SIAM J. Math. Anal., 28 (1997), 539–569 | DOI | MR | Zbl
[9] Heinzle J. M., Uggla C., “Newtonian stellar models”, Ann. Physics, 308:1 (2003), 18–61 | DOI | MR | Zbl
[10] Ducomet B., Zlotnik A., “Viscous compressible barotropic symmetric flows with free boundary under general mass force. Part I: Uniform-in-time bounds and stabilization”, Math. Methods Appl. Sci., 28 (2005), 827–863 | DOI | MR | Zbl
[11] Zlotnik A. A., Dyukome B., “Globalnoe povedenie simmetrichnykh techenii vyazkoi szhimaemoi barotropnoi zhidkosti so svobodnoi granitsei dlya obschei massovoi sily”, Dokl. RAN, 398:4 (2004), 444–448 | MR
[12] Kuan W. C., Lin S. S., “Numbers of equilibria for the equation of self-gravitating isentropic gas surrounding a solid ball”, Japan J. Indust. Appl. Math., 13 (1996), 311–331 | MR | Zbl
[13] Fu C. C., Lin S. S., “On the critical mass of the collapse of a gaseous star in spherically symmetric and isentropic motion”, Japan J. Indust. Appl. Math., 15 (1998), 461–469 | MR | Zbl
[14] Strömer G., Zajaczkowski W., “On the existence and properties of the rotationally symmetric equilibrium states of compressible barotropic self-gravitating fluids”, Indiana Univ. Math. J., 46 (1997), 1181–1220 | MR
[15] Zlotnik A. A., Dyukome B., “Zadacha simmetrichnogo ravnovesiya szhimaemoi barotropnoi zhidkosti so svobodnoi granitsei dlya obschei massovoi sily”, Dokl. RAN, 401:2 (2005), 154–159 | MR
[16] Zlotnik A. A., Dyukome B., “Funktsionaly Lyapunova simmetrichnykh techenii vyazkoi szhimaemoi barotropnoi zhidkosti so svobodnoi granitsei dlya obschei massovoi sily”, Dokl. RAN, 402:1 (2005), 14–19 | MR
[17] Zlotnik A. A., Nguen Zha Bao., “Svoistva i asimptoticheskoe povedenie reshenii odnoi zadachi odnomernogo dvizheniya vyazkogo barotropnogo gaza”, Matem. zametki, 55:5 (1994), 51–68 | MR | Zbl
[18] Zlotnik A. A., “Ob uravneniyakh odnomernogo dvizheniya vyazkogo barotropnogo gaza pri nalichii massovoi sily”, Sib. matem. zhurn., 33:5 (1992), 62–79 | MR | Zbl
[19] Mucha P., “Compressible Navier–Stokes system in 1-D”, Math. Methods Appl. Sci., 21 (2001), 607–622 | DOI | MR
[20] Matsumura A., Yanagi S., “Uniform boundedness of the solutions for a one-dimensional isentropic model system of a compressible viscous gas”, Comm. Math. Phys., 175 (1996), 259–274 | DOI | MR | Zbl
[21] Straškraba I., Zlotnik A., “Global behavior of 1d-viscous compressible barotropic fluid with a free boundary and large data”, J. Math. Fluid Mech., 5 (2003), 119–143 ; “Erratum”, 6 (2004), 249–250 | MR | Zbl | DOI | MR
[22] Zlotnik A., “Global behaviour of 1-D viscous compressible barotropic flows with free boundary and self-gravitation”, Math. Methods Appl. Sci., 26 (2003), 671–690 | DOI | MR | Zbl
[23] Zlotnik A. A., “Ob odnoi zadache Nishida”, ZhVM i MF, 38:8 (1998), 1279–1286 | MR | Zbl
[24] Zlotnik A. A., Nguen Zha Bao., “Globalnye svoistva simmetrichnykh reshenii zadachi dvizheniya vyazkogo barotropnogo gaza so svobodnoi granitsei”, Vestn. MEI, 5:6 (1998), 52–61
[25] Zlotnik A. A., “Ravnomernye otsenki i stabilizatsiya simmetrichnykh reshenii odnoi kvazilineinoi sistemy uravnenii”, Differents. uravneniya, 36:5 (2000), 634–646 | MR | Zbl
[26] Zlotnik A. A., “Global properties of a difference approximation of the free boundary problem for a symmetric motion of a viscous barotropic gas”, Russian J. Numer. Anal. Math. Modelling, 14 (1999), 527–548 | MR | Zbl
[27] Matsumura A., “Large-time behavior of the spherically symmetric solutions of an isothermal model of compressible viscous gas”, Transp. Theory Statist. Phys., 21 (1992), 579–592 | DOI | MR | Zbl
[28] Yanagi S., “Asymptotic stability of the spherically symmetric solutions for an isentropic model of compressible viscous gas”, Japan J. Indust. Appl. Math., 14 (1997), 215–243 | MR
[29] Matušu-Nečasova Š., Okada M., Makino T., “Free boundary problem for the equation of spherically symmetric motion of a viscous gas. III”, Japan J. Indust. Appl. Math., 14 (1997), 199–213 | MR
[30] Ducomet B., “Some asymptotics for a reactive Navier–Stokes–Poisson system”, Math. Models Methods. Appl. Sci., 9 (1999), 1039–1076 | DOI | MR | Zbl
[31] Khartman P., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl
[32] Penel P., Straškraba I., “Global behavior of compressible fluid with a free boundary and large data”, Applied nonlinear analysis, eds. A. Sequeira et al., Kluwer Academic, New York, 1999, 427–442 | MR | Zbl
[33] Zlotnik A. A., Maksimov M. V., “On symmetric equilibrium of an isothermal gas with a free boundary and a body force”, Abstr. Appl. Anal., 2006, Art. ID 69347, 12 pp. | MR
[34] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967
[35] Ducomet B., Zlotnik A., “Remark on the stabilization of a viscous barotropic medium with a nonmonotone equation of state”, Appl. Math. Lett., 14 (2001), 921–928 | DOI | MR