Generating functions for modular graphs and Burgers's equation
Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1715-1743 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the generating functions of modular graphs satisfy Burgers's equations, which enable one to obtain in a unified way the generating functions for the virtual Euler characteristic and the Poincaré polynomial of the moduli space of punctured curves $\overline M_{g,n}$ and for the number (with weights $1/|{\operatorname{Aut}G}|$) of modular graphs $G$ of a definite type.
@article{SM_2005_196_12_a0,
     author = {I. V. Artamkin},
     title = {Generating functions for modular graphs and {Burgers's} equation},
     journal = {Sbornik. Mathematics},
     pages = {1715--1743},
     year = {2005},
     volume = {196},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_12_a0/}
}
TY  - JOUR
AU  - I. V. Artamkin
TI  - Generating functions for modular graphs and Burgers's equation
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1715
EP  - 1743
VL  - 196
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_12_a0/
LA  - en
ID  - SM_2005_196_12_a0
ER  - 
%0 Journal Article
%A I. V. Artamkin
%T Generating functions for modular graphs and Burgers's equation
%J Sbornik. Mathematics
%D 2005
%P 1715-1743
%V 196
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2005_196_12_a0/
%G en
%F SM_2005_196_12_a0
I. V. Artamkin. Generating functions for modular graphs and Burgers's equation. Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1715-1743. http://geodesic.mathdoc.fr/item/SM_2005_196_12_a0/

[1] Fulton W., MacPherson R., “A compactification of configuration spaces”, Ann. of Math. (2), 139 (1994), 183–225 | DOI | MR | Zbl

[2] Manin Yu. I., “Generating functions in algebraic geometry and sums over trees”, The moduli spaces of curves, Progr. Math., 129, eds. Dijkgraaf et al, Birkhäuser Boston, Boston, MA, 1995, 401–417 | MR | Zbl

[3] Harer J., Zagier D., “The Euler characteristic of the moduli space of curves”, Invent. Math., 85:3 (1986), 457–485 | DOI | MR | Zbl

[4] Cole J. D., “On a quasi-linear parabolic equation occurring in aerodynamics”, Quart. App. Math., 9 (1951), 225–236 | MR | Zbl

[5] Hopf E., “The partial differential equation $u_t+uu_x=\mu u_{xx}$”, Comm. Pure Appl. Math., 3 (1950), 201–230 | DOI | MR | Zbl

[6] Getzler E., “The semi-classical aproximation for modular operads”, Comm. Math. Phys., 194 (1998), 481–492 | DOI | MR | Zbl

[7] Tychonoff A., “Théorèmes d'unicité pour l'équation de la chaleur”, Matem. sb., 42:2 (1935), 199–216 | Zbl

[8] Manin Yu. I., Frobeniusovy mnogoobraziya, kvantovye kogomologii i prostranstva modulei, Faktorial Press, M., 2002

[9] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR

[10] Tyurin A. N., Kvantovanie, klassicheskaya i kvantovaya teoriya polya i teta-funktsii, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003 | Zbl