Generating functions for modular graphs and Burgers's equation
Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1715-1743

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the generating functions of modular graphs satisfy Burgers's equations, which enable one to obtain in a unified way the generating functions for the virtual Euler characteristic and the Poincaré polynomial of the moduli space of punctured curves $\overline M_{g,n}$ and for the number (with weights $1/|{\operatorname{Aut}G}|$) of modular graphs $G$ of a definite type.
@article{SM_2005_196_12_a0,
     author = {I. V. Artamkin},
     title = {Generating functions for modular graphs and {Burgers's} equation},
     journal = {Sbornik. Mathematics},
     pages = {1715--1743},
     publisher = {mathdoc},
     volume = {196},
     number = {12},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_12_a0/}
}
TY  - JOUR
AU  - I. V. Artamkin
TI  - Generating functions for modular graphs and Burgers's equation
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1715
EP  - 1743
VL  - 196
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_12_a0/
LA  - en
ID  - SM_2005_196_12_a0
ER  - 
%0 Journal Article
%A I. V. Artamkin
%T Generating functions for modular graphs and Burgers's equation
%J Sbornik. Mathematics
%D 2005
%P 1715-1743
%V 196
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_12_a0/
%G en
%F SM_2005_196_12_a0
I. V. Artamkin. Generating functions for modular graphs and Burgers's equation. Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1715-1743. http://geodesic.mathdoc.fr/item/SM_2005_196_12_a0/