Generating functions for modular graphs and Burgers's equation
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1715-1743
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that the generating functions of modular graphs satisfy Burgers's equations, which enable one to obtain in a unified way the generating functions for the virtual Euler characteristic and the Poincaré polynomial of the moduli space of punctured curves $\overline M_{g,n}$ and for the number (with weights $1/|{\operatorname{Aut}G}|$) of modular graphs $G$ of a definite type.
			
            
            
            
          
        
      @article{SM_2005_196_12_a0,
     author = {I. V. Artamkin},
     title = {Generating functions for modular graphs and {Burgers's} equation},
     journal = {Sbornik. Mathematics},
     pages = {1715--1743},
     publisher = {mathdoc},
     volume = {196},
     number = {12},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_12_a0/}
}
                      
                      
                    I. V. Artamkin. Generating functions for modular graphs and Burgers's equation. Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1715-1743. http://geodesic.mathdoc.fr/item/SM_2005_196_12_a0/
