@article{SM_2005_196_12_a0,
author = {I. V. Artamkin},
title = {Generating functions for modular graphs and {Burgers's} equation},
journal = {Sbornik. Mathematics},
pages = {1715--1743},
year = {2005},
volume = {196},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_12_a0/}
}
I. V. Artamkin. Generating functions for modular graphs and Burgers's equation. Sbornik. Mathematics, Tome 196 (2005) no. 12, pp. 1715-1743. http://geodesic.mathdoc.fr/item/SM_2005_196_12_a0/
[1] Fulton W., MacPherson R., “A compactification of configuration spaces”, Ann. of Math. (2), 139 (1994), 183–225 | DOI | MR | Zbl
[2] Manin Yu. I., “Generating functions in algebraic geometry and sums over trees”, The moduli spaces of curves, Progr. Math., 129, eds. Dijkgraaf et al, Birkhäuser Boston, Boston, MA, 1995, 401–417 | MR | Zbl
[3] Harer J., Zagier D., “The Euler characteristic of the moduli space of curves”, Invent. Math., 85:3 (1986), 457–485 | DOI | MR | Zbl
[4] Cole J. D., “On a quasi-linear parabolic equation occurring in aerodynamics”, Quart. App. Math., 9 (1951), 225–236 | MR | Zbl
[5] Hopf E., “The partial differential equation $u_t+uu_x=\mu u_{xx}$”, Comm. Pure Appl. Math., 3 (1950), 201–230 | DOI | MR | Zbl
[6] Getzler E., “The semi-classical aproximation for modular operads”, Comm. Math. Phys., 194 (1998), 481–492 | DOI | MR | Zbl
[7] Tychonoff A., “Théorèmes d'unicité pour l'équation de la chaleur”, Matem. sb., 42:2 (1935), 199–216 | Zbl
[8] Manin Yu. I., Frobeniusovy mnogoobraziya, kvantovye kogomologii i prostranstva modulei, Faktorial Press, M., 2002
[9] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR
[10] Tyurin A. N., Kvantovanie, klassicheskaya i kvantovaya teoriya polya i teta-funktsii, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003 | Zbl