Roberts-type embeddings and conversion of transversal Tverberg's theorem
Sbornik. Mathematics, Tome 196 (2005) no. 11, pp. 1585-1603

Voir la notice de l'article provenant de la source Math-Net.Ru

Central in the paper are two results on the existence of “economical” embeddings in a Euclidean space. The first result (Corollary 1.4) states the existence of an embedding with image intersecting the large-dimensional planes in sets of “controllable” dimension. The second result (Corollary 1.6) proves the existence of maps such that each small-dimensional plane contains “controllably” many points of the image. Well known results of Nöbeling–Pontryagin, Roberts, Hurewicz, Boltyanskii, and Goodsell can be obtained as consequences of these results. Their infinite-dimensional version concerning an embedding in a Hilbert space is also established (Theorem 1.8).
@article{SM_2005_196_11_a1,
     author = {S. A. Bogatyi and V. M. Valov},
     title = {Roberts-type embeddings and conversion of transversal {Tverberg's} theorem},
     journal = {Sbornik. Mathematics},
     pages = {1585--1603},
     publisher = {mathdoc},
     volume = {196},
     number = {11},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_11_a1/}
}
TY  - JOUR
AU  - S. A. Bogatyi
AU  - V. M. Valov
TI  - Roberts-type embeddings and conversion of transversal Tverberg's theorem
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1585
EP  - 1603
VL  - 196
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_11_a1/
LA  - en
ID  - SM_2005_196_11_a1
ER  - 
%0 Journal Article
%A S. A. Bogatyi
%A V. M. Valov
%T Roberts-type embeddings and conversion of transversal Tverberg's theorem
%J Sbornik. Mathematics
%D 2005
%P 1585-1603
%V 196
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_11_a1/
%G en
%F SM_2005_196_11_a1
S. A. Bogatyi; V. M. Valov. Roberts-type embeddings and conversion of transversal Tverberg's theorem. Sbornik. Mathematics, Tome 196 (2005) no. 11, pp. 1585-1603. http://geodesic.mathdoc.fr/item/SM_2005_196_11_a1/