Roberts-type embeddings and conversion of transversal Tverberg's theorem
Sbornik. Mathematics, Tome 196 (2005) no. 11, pp. 1585-1603
Voir la notice de l'article provenant de la source Math-Net.Ru
Central in the paper are two results on the existence of “economical” embeddings in a Euclidean space. The first result (Corollary 1.4) states the existence of an embedding with image intersecting the large-dimensional planes in sets of “controllable” dimension. The second result (Corollary 1.6) proves the existence of maps such that each small-dimensional plane contains “controllably” many points of the image.
Well known results of Nöbeling–Pontryagin, Roberts, Hurewicz, Boltyanskii, and Goodsell can be obtained as consequences of these results. Their infinite-dimensional version concerning an embedding in a Hilbert space is also established (Theorem 1.8).
@article{SM_2005_196_11_a1,
author = {S. A. Bogatyi and V. M. Valov},
title = {Roberts-type embeddings and conversion of transversal {Tverberg's} theorem},
journal = {Sbornik. Mathematics},
pages = {1585--1603},
publisher = {mathdoc},
volume = {196},
number = {11},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_11_a1/}
}
TY - JOUR AU - S. A. Bogatyi AU - V. M. Valov TI - Roberts-type embeddings and conversion of transversal Tverberg's theorem JO - Sbornik. Mathematics PY - 2005 SP - 1585 EP - 1603 VL - 196 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2005_196_11_a1/ LA - en ID - SM_2005_196_11_a1 ER -
S. A. Bogatyi; V. M. Valov. Roberts-type embeddings and conversion of transversal Tverberg's theorem. Sbornik. Mathematics, Tome 196 (2005) no. 11, pp. 1585-1603. http://geodesic.mathdoc.fr/item/SM_2005_196_11_a1/