Roberts-type embeddings and conversion of transversal Tverberg's theorem
Sbornik. Mathematics, Tome 196 (2005) no. 11, pp. 1585-1603 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Central in the paper are two results on the existence of “economical” embeddings in a Euclidean space. The first result (Corollary 1.4) states the existence of an embedding with image intersecting the large-dimensional planes in sets of “controllable” dimension. The second result (Corollary 1.6) proves the existence of maps such that each small-dimensional plane contains “controllably” many points of the image. Well known results of Nöbeling–Pontryagin, Roberts, Hurewicz, Boltyanskii, and Goodsell can be obtained as consequences of these results. Their infinite-dimensional version concerning an embedding in a Hilbert space is also established (Theorem 1.8).
@article{SM_2005_196_11_a1,
     author = {S. A. Bogatyi and V. M. Valov},
     title = {Roberts-type embeddings and conversion of transversal {Tverberg's} theorem},
     journal = {Sbornik. Mathematics},
     pages = {1585--1603},
     year = {2005},
     volume = {196},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_11_a1/}
}
TY  - JOUR
AU  - S. A. Bogatyi
AU  - V. M. Valov
TI  - Roberts-type embeddings and conversion of transversal Tverberg's theorem
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1585
EP  - 1603
VL  - 196
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_11_a1/
LA  - en
ID  - SM_2005_196_11_a1
ER  - 
%0 Journal Article
%A S. A. Bogatyi
%A V. M. Valov
%T Roberts-type embeddings and conversion of transversal Tverberg's theorem
%J Sbornik. Mathematics
%D 2005
%P 1585-1603
%V 196
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2005_196_11_a1/
%G en
%F SM_2005_196_11_a1
S. A. Bogatyi; V. M. Valov. Roberts-type embeddings and conversion of transversal Tverberg's theorem. Sbornik. Mathematics, Tome 196 (2005) no. 11, pp. 1585-1603. http://geodesic.mathdoc.fr/item/SM_2005_196_11_a1/

[1] Fedorchuk V. V., Chigogidze A. Ch., Absolyutnye retrakty i beskonechnomernye mnogoobraziya, Nauka, M., 1992 | MR | Zbl

[2] Bogatyi S. A., “Tsvetnaya teorema Tverberg”, Vestn. MGU. Ser. 1. Matem., mekh., 1999, no. 3, 14–19 | MR | Zbl

[3] Bogatyi S. A., “Gipoteza Borsuka, prepyatstvie Ryshkova, interpolyatsiya, approksimatsiya Chebysheva, transversalnaya teorema Tverberga, zadachi”, Trudy MIAN, 239, 2002, 63–82 | MR | Zbl

[4] Roberts J., “A theorem on dimension”, Duke Math. J., 8 (1941), 565–574 | DOI | MR | Zbl

[5] Berkowitz H., Roy P., “General position and algebraic independence”, Geometric Topology, Proceedings of the Geometry Topology Conference (Park City, UT), eds. L. C. Glaser, T. B. Rushing, Springer, New York, 1975, 9–15 | MR

[6] Goodsell T., Projections of compacta in $\mathbb R^n$, Ph.D. thesis, Brigham Young Univ., Provo, UT, 1997

[7] Goodsell T., “Strong general position and Menger curves”, Topology Appl., 120 (2002), 47–55 | DOI | MR | Zbl

[8] Wright D. G., “Geometric taming of compacta in $E^n$”, Proc. Amer. Math. Soc., 86:4 (1982), 641–645 | DOI | MR | Zbl

[9] Boltyanskii V. G., “Otobrazheniya kompaktov v evklidovy prostranstva”, Izv. AN SSSR. Ser. matem., 23 (1959), 871–892 | MR | Zbl

[10] Munkers J., Topology, Prentice Hall, Englewood Cliffs, NY, 1975

[11] Repovš D., Semenov P., Continuous selections of multivalued mappings, Math. Appl., 455, Kluwer, Dordrecht, 1998 | MR | Zbl

[12] Michael E., “Continuous selections avoiding a set”, Topology Appl., 28 (1988), 195–213 | DOI | MR | Zbl

[13] Tuncali M., Valov V., “On dimensionally restricted maps”, Fund. Math., 175 (2002), 35–52 | DOI | MR | Zbl

[14] Gutev V., Valov V., “Dense families of selections and finite-dimensional spaces”, Set-Valued Anal., 11 (2003), 373–391 | DOI | MR | Zbl

[15] Fox R., “Extension of homeomorphisms into Euclidean and Hilbert parallelotopes”, Duke Math. J., 8 (1941), 452–456 | DOI | MR | Zbl

[16] Uspenskij V. V., “A remark on a question of R. Pol concerning light maps”, Topology Appl., 103:3 (2000), 291–293 | DOI | MR

[17] Tuncali M., Valov V., “On finite-dimensional maps. II”, Topology Appl., 132 (2003), 81–87 | DOI | MR | Zbl

[18] Hurewicz W., “Über Abbildungen von endlichdimensionalen Räumen auf Teilmengen Cartesischer Räume”, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 4 (1933), 754–768

[19] Dranišnikov A. N., Repovš D., Ščepin E. V., “On intersections of compacta of complementery dimensions in Euclidean space”, Topol. Appl., 38 (1991), 237–253 | DOI | MR | Zbl

[20] Tuncali M., Valov V., “On regularly branched maps”, Topology Appl., 145 (2004), 119–145 | DOI | MR

[21] Bogatyi S. A., “Geometriya otobrazhenii v evklidovo prostranstvo”, UMN, 53:5 (1998), 27–56 | MR | Zbl

[22] Boltyanski V., Martini H., Soltan V., Geometric methods and optimization problems, Kluwer Acad. Publ., Dordrecht, 1999, 871–892 | MR

[23] van Kampen E. R., “Komplexe in euklidischen Räumen”, Abh. Math. Sem. Univ. Hamburg, 9 (1932), 72–78 | Zbl

[24] Flores A., “Über $n$-dimensionale Komplexe, die im $\mathbb R_{2n+1}$ absolut selbstverschlungen sind”, Ergeb. Math. Kolloq., 6 (1935), 4–7 | Zbl

[25] Sarkaria K. S., “A generalized van Kampen–Flores theorem”, Proc. Amer. Math. Soc., 111:2 (1991), 559–565 | DOI | MR | Zbl

[26] Volovikov A. Yu., “K teoreme van Kampena–Floresa”, Matem. zametki, 59:5 (1996), 663–670 | MR | Zbl

[27] Bogatyi S. A., “$k$-regulyarnye otobrazheniya v evklidovo prostranstvo i zadacha Borsuka–Boltyanskogo”, Matem. sb., 193:1 (2002), 73–82 | MR | Zbl

[28] Živaljević R. T., “The Tverberg–Vrećica problem and the combinatorial geometry on vector bundles”, Israel J. Math., 111 (1999), 53–76 | DOI | MR

[29] Tverberg H., Vrećica S., “On generalizations of Radon's theorem and the ham sandwich theorem”, European J. Combin., 14 (1993), 259–264 | DOI | MR | Zbl

[30] Boltyanskii V. G., Ryshkov S. S., Shashkin Yu. A., “O $k$-regulyarnykh vlozheniyakh i ikh primenenii k teorii priblizheniya funktsii”, UMN, 15:6 (1960), 125–132 | MR | Zbl

[31] Shashkin Yu. A., “Interpolyatsionnye semeistva funktsii i vlozheniya mnozhestv v evklidovy i proektivnye prostranstva”, Dokl. AN SSSR, 174:5 (1967), 1030–1032 | MR | Zbl