Direct and inverse scattering problems for the perturbed Hill difference equation
Sbornik. Mathematics, Tome 196 (2005) no. 10, pp. 1529-1552 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The direct and inverse scattering problems are studied for the perturbed Hill equation $(\widehat a_{n-1}+a_{n-1})y_{n-1} +(\,\widehat b_n+b_n)y_n+(\widehat a_n+a_n)y_{n+1}=\lambda y_n$, $n\in\Bbb Z$. The perturbation coefficients $a_n$, $b_n$ are reconstructed from the periodic coefficients $\widehat a_n$, $\widehat b_n$ and the scattering data.
@article{SM_2005_196_10_a5,
     author = {Ag. Kh. Khanmamedov},
     title = {Direct and inverse scattering problems for the perturbed {Hill} difference equation},
     journal = {Sbornik. Mathematics},
     pages = {1529--1552},
     year = {2005},
     volume = {196},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_10_a5/}
}
TY  - JOUR
AU  - Ag. Kh. Khanmamedov
TI  - Direct and inverse scattering problems for the perturbed Hill difference equation
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1529
EP  - 1552
VL  - 196
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_10_a5/
LA  - en
ID  - SM_2005_196_10_a5
ER  - 
%0 Journal Article
%A Ag. Kh. Khanmamedov
%T Direct and inverse scattering problems for the perturbed Hill difference equation
%J Sbornik. Mathematics
%D 2005
%P 1529-1552
%V 196
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2005_196_10_a5/
%G en
%F SM_2005_196_10_a5
Ag. Kh. Khanmamedov. Direct and inverse scattering problems for the perturbed Hill difference equation. Sbornik. Mathematics, Tome 196 (2005) no. 10, pp. 1529-1552. http://geodesic.mathdoc.fr/item/SM_2005_196_10_a5/

[1] Tarnopolskii V. G., “Zadacha rasseyaniya dlya raznostnogo uravneniya”, Dokl. AN SSSR, 136:4 (1961), 779–782 | MR | Zbl

[2] Case K. M., Kac M., “A discrete version of the inverse scattering problem”, J. Math. Phys., 14:5 (1973), 594–603 | DOI | MR

[3] Guseinov G. Sh., “Obratnaya zadacha teorii rasseyaniya dlya raznostnogo uravneniya vtorogo poryadka na vsei osi”, Dokl. AN SSSR, 231:5 (1976), 1045–1048 | MR | Zbl

[4] Guseinov G. Sh., Obratnye zadachi teorii rasseyaniya dlya samosopryazhennykh raznostnykh operatorov vtorogo poryadka, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1976

[5] Nikishin E. M., “Raznostnyi operator Shturma–Liuvillya i nekotorye voprosy teorii funktsii”, Trudy sem. im. I. G. Petrovskogo, 10, Izd-vo MGU, M., 1984, 3–77 | MR

[6] Aptekarev A. I., Nikishin E. M., “Zadacha rasseyaniya dlya diskretnogo operator Shturma–Liuvillya”, Matem. sb., 121:3 (1983), 327–358 | MR | Zbl

[7] Guseinov I. M., Khanmamedov Ag. Kh., “Asimptotika pri $t\to\infty$ zadachi Koshi dlya tsepochki Tody s nachalnymi dannymi tipa stupenki”, TMF, 119:3 (1999), 429–440 | MR | Zbl

[8] Khanmamedov Ag. Kh., “Operatory preobrazovaniya dlya vozmuschennogo raznostnogo uravneniya Khilla i ikh odno prilozhenie”, Sib. matem. zhurn., 44:4 (2003), 926–937 | MR | Zbl

[9] Geronimo J., Van Assche W., “Orthogonal polynomials with asymptotically periodic recurrence coefficients”, J. Approx. Theory, 46 (1986), 251–283 | DOI | MR | Zbl

[10] Teschl G., Jacobi operators and completely integrable nonlinear lattices, Math. Surveys Monographs, 72, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl

[11] Bazargan J., Egorova I., “Jacobi operator withs step-like asymptotically periodic coefficients”, Mat. Fiz. Anal. Geom., 10:3 (2003), 425–442 | MR | Zbl

[12] Khanmamedov Ag. Kh., “On the theory of inverse scattering problems for a system of a difference equations”, Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 20:4, Math. Mech. (2000), 132–135 | MR | Zbl

[13] Newton R. G., “Inverse scattering by a local impurity in a periodic potential in one dimension”, J. Math. Phys., 24 (1983), 2152–2162 | DOI | MR | Zbl

[14] Firsova N. E., “Pryamaya i obratnaya zadacha rasseyaniya dlya odnomernogo vozmuschennogo operatora Khilla”, Matem. sb., 130 (172):3 (7) (1986), 349–385 | MR | Zbl

[15] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[16] Toda M., Teoriya nelineinykh reshetok, Mir, M., 1984 | MR

[17] Khanmamedov Ag. Kh., “K spektralnoi teorii raznostnogo uravneniya s periodicheskimi koeffitsientami”, Vestn. BGU. Ser. fiz.-matem. nauk., 2001, no. 1, 124–130 | MR

[18] Khanmamedov Ag. Kh., “O konformnosti otobrazheniya, porozhdaemogo funktsiei Blokha raznostnogo uravneniya Khilla”, Vestn. BGU. Ser. fiz.-matem. nauk, 2004, no. 1, 115–121

[19] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR

[20] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR

[21] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M., 1950