Uniform distribution and Voronoi convergence
Sbornik. Mathematics, Tome 196 (2005) no. 10, pp. 1495-1502
Cet article a éte moissonné depuis la source Math-Net.Ru
There is a broad generalization of a uniformly distributed sequence according to Weyl where the frequency of elements of this sequence falling into an interval is defined by using a matrix summation method of a general form. In the present paper conditions for uniform distribution are found in the case where a regular Voronoi method is chosen as the summation method. The proofs are based on estimates of trigonometric sums of a certain special type. It is shown that the sequence of the fractional parts of the logarithms of positive integers is not uniformly distributed for any choice of a regular Voronoi method.
@article{SM_2005_196_10_a3,
author = {V. V. Kozlov and T. V. Madsen},
title = {Uniform distribution and {Voronoi} convergence},
journal = {Sbornik. Mathematics},
pages = {1495--1502},
year = {2005},
volume = {196},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_10_a3/}
}
V. V. Kozlov; T. V. Madsen. Uniform distribution and Voronoi convergence. Sbornik. Mathematics, Tome 196 (2005) no. 10, pp. 1495-1502. http://geodesic.mathdoc.fr/item/SM_2005_196_10_a3/
[1] Khardi G., Raskhodyaschiesya ryady, IL, M., 1951
[2] Keipers L., Niderreiter G., Ravnomernoe raspredelenie posledovatelnostei, Nauka, M., 1985 | MR
[3] Gordelii E. K., “K teoreme fon Neimana o perestanovkakh vsyudu plotnykh posledovatelnostei”, Vestn. MGU. Ser. 1. Matem., mekh., 2004, no. 6, 18–24 | MR | Zbl
[4] Gashkov S. B., Chubarikov V. N., Arifmetika. Algoritmy. Slozhnost vychislenii, Nauka, M., 1996 | Zbl
[5] Tsuji M., “On the uniform distribution of numbers $\bmod1$”, J. Math. Soc. Japan, 4 (1952), 313–322 | MR | Zbl
[6] Kozlov V. V., “O ravnomernom raspredelenii”, Izv. vuzov. Severo-Kavkazskii region. Ser. estestv. nauki, 2001, 96–99