Bianchi congruences of two-dimensional surfaces in~$E^4$
Sbornik. Mathematics, Tome 196 (2005) no. 10, pp. 1473-1493
Voir la notice de l'article provenant de la source Math-Net.Ru
Pseudospherical Bianchi congruences in Euclidean 4-space $E^4$ are considered. The focal surfaces of such congruences are shown to have a constant negative Gaussian curvature.
A geometric and an analytic description of special pseudo-spherical surfaces in $E^4$ admitting a Bianchi congruence are obtained.
@article{SM_2005_196_10_a2,
author = {V. A. Gorkavyy},
title = {Bianchi congruences of two-dimensional surfaces in~$E^4$},
journal = {Sbornik. Mathematics},
pages = {1473--1493},
publisher = {mathdoc},
volume = {196},
number = {10},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_10_a2/}
}
V. A. Gorkavyy. Bianchi congruences of two-dimensional surfaces in~$E^4$. Sbornik. Mathematics, Tome 196 (2005) no. 10, pp. 1473-1493. http://geodesic.mathdoc.fr/item/SM_2005_196_10_a2/