Bianchi congruences of two-dimensional surfaces in~$E^4$
Sbornik. Mathematics, Tome 196 (2005) no. 10, pp. 1473-1493

Voir la notice de l'article provenant de la source Math-Net.Ru

Pseudospherical Bianchi congruences in Euclidean 4-space $E^4$ are considered. The focal surfaces of such congruences are shown to have a constant negative Gaussian curvature. A geometric and an analytic description of special pseudo-spherical surfaces in $E^4$ admitting a Bianchi congruence are obtained.
@article{SM_2005_196_10_a2,
     author = {V. A. Gorkavyy},
     title = {Bianchi congruences of two-dimensional surfaces in~$E^4$},
     journal = {Sbornik. Mathematics},
     pages = {1473--1493},
     publisher = {mathdoc},
     volume = {196},
     number = {10},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_10_a2/}
}
TY  - JOUR
AU  - V. A. Gorkavyy
TI  - Bianchi congruences of two-dimensional surfaces in~$E^4$
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1473
EP  - 1493
VL  - 196
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_10_a2/
LA  - en
ID  - SM_2005_196_10_a2
ER  - 
%0 Journal Article
%A V. A. Gorkavyy
%T Bianchi congruences of two-dimensional surfaces in~$E^4$
%J Sbornik. Mathematics
%D 2005
%P 1473-1493
%V 196
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_10_a2/
%G en
%F SM_2005_196_10_a2
V. A. Gorkavyy. Bianchi congruences of two-dimensional surfaces in~$E^4$. Sbornik. Mathematics, Tome 196 (2005) no. 10, pp. 1473-1493. http://geodesic.mathdoc.fr/item/SM_2005_196_10_a2/