On the theory of perturbed inclusions and its applications
Sbornik. Mathematics, Tome 196 (2005) no. 10, pp. 1421-1472 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Inclusions with right-hand side that is the algebraic sum of the values of a compact-valued operator and a map equal to the product of a linear integral operator and a set-valued operator with values convex with respect to switching are considered. Existence questions for solutions of such inclusions are discussed, and the density principle and the ‘bang-bang’ principle are established. Properties of the solution sets of inclusions with internal and external perturbations are studied. A necessary and sufficient condition ensuring that the intersection of the closures of the sets of approximate solutions coincides with the closure of the set of the original inclusion is obtained. The results are applied to the analysis of boundary-value problems for functional-differential inclusions.
@article{SM_2005_196_10_a1,
     author = {A. I. Bulgakov and O. P. Belyaeva and A. A. Grigorenko},
     title = {On the theory of perturbed inclusions and its applications},
     journal = {Sbornik. Mathematics},
     pages = {1421--1472},
     year = {2005},
     volume = {196},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_10_a1/}
}
TY  - JOUR
AU  - A. I. Bulgakov
AU  - O. P. Belyaeva
AU  - A. A. Grigorenko
TI  - On the theory of perturbed inclusions and its applications
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1421
EP  - 1472
VL  - 196
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_10_a1/
LA  - en
ID  - SM_2005_196_10_a1
ER  - 
%0 Journal Article
%A A. I. Bulgakov
%A O. P. Belyaeva
%A A. A. Grigorenko
%T On the theory of perturbed inclusions and its applications
%J Sbornik. Mathematics
%D 2005
%P 1421-1472
%V 196
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2005_196_10_a1/
%G en
%F SM_2005_196_10_a1
A. I. Bulgakov; O. P. Belyaeva; A. A. Grigorenko. On the theory of perturbed inclusions and its applications. Sbornik. Mathematics, Tome 196 (2005) no. 10, pp. 1421-1472. http://geodesic.mathdoc.fr/item/SM_2005_196_10_a1/

[1] Fryszkowski A., “Continuous selection for a class of non-convex multivalued maps”, Studia Math., 76:2 (1983), 163–174 | MR | Zbl

[2] Bulgakov A. I., “K voprosu suschestvovaniya nepreryvnykh vetvei u mnogoznachnykh otobrazhenii s nevypuklymi obrazami v prostranstvakh summiruemykh funktsii”, Matem. sb., 136 (178):2 (1988), 292–300 | MR | Zbl

[3] Bulgakov A. I., Tkach L. I., “Nekotorye rezultaty po teorii vozmuschenii mnogoznachnykh operatorov s vypuklymi zamknutymi znacheniyami otobrazheniem tipa Gammershteina s nevypuklymi obrazami i ikh prilozheniya”, Vestn. TambGU. Ser. estestv. i tekhnich. nauki, 2:2 (1997), 111–120

[4] Bulgakov A. I., Tkach L. I., “Asimptoticheskoe predstavlenie mnozhestv $\delta$-reshenii vklyucheniya tipa Gammershteina”, Vestn. TambGU. Ser. estestv. i tekhnich. nauki, 2:3 (1997), 294–298 | MR

[5] Bulgakov A. I., Tkach L. I., “Vozmuschenie vypukloznachnogo operatora mnogoznachnym otobrazheniem tipa Gammershteina s nevypuklymi obrazami i kraevye zadachi dlya funktsionalno-differentsialnykh vklyuchenii”, Matem. sb., 189:6 (1998), 3–32 | MR | Zbl

[6] Bulgakov A. I., Tkach L. I., “Vozmuschenie odnoznachnogo operatora mnogoznachnym otobrazheniem tipa Gammershteina s nevypuklymi obrazami”, Izv. vuzov. Ser. matem., 1999, no. 3, 3–16 | MR | Zbl

[7] Michal E. A., “Continuous selection. I”, Ann. Math., 63:2 (1956), 361–381 | DOI

[8] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[9] Natanson I. T., Teoriya funktsii veschestvennoi peremennoi, Nauka, Fizmatlit, M., 1974 | MR

[10] Bulgakov A. I., “Nepreryvnye vetvi mnogoznachnykh otobrazhenii i integralnye vklyucheniya s nevypuklymi obrazami i ikh prilozheniya. I”, Differents. uravneniya, 28:3 (1992), 371–379 | MR | Zbl

[11] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Trudy MIAN, 169, 1985, 194–252 | MR | Zbl

[12] Filippov A. F., “Klassicheskie resheniya differentsialnykh uravnenii s mnogoznachnoi pravoi chastyu”, Vestn. MGU. Ser. 1. Matem., mekh., 1967, no. 3, 16–26 | Zbl

[13] Bulgakov A. I., “Funktsionalno-differentsialnoe vklyuchenie s operatorom, imeyuschim nevypuklye obrazy”, Differents. uravneniya, 23:10 (1987), 1659–1668 | MR | Zbl

[14] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR

[15] Wazewski T., “Sur une generalisation de la notion des solutions d'une equation au contingent”, Bull. Acad. Polon. Sci. Sér. Sei. Math. Astronom. Phys., 10:1 (1962), 11–15 | MR | Zbl

[16] Bulgakov A. I., Skomorokhov V. V., “Approksimatsiya differentsialnykh vklyuchenii”, Matem. sb., 193:2 (2002), 35–52 | MR | Zbl

[17] Bulgakov A. I., “Integralnye vklyucheniya s nevypuklymi obrazami i ikh prilozheniya k kraevym zadacham differentsialnykh vklyuchenii”, Matem. sb., 183:10 (1992), 63–86 | MR | Zbl

[18] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986 | MR | Zbl

[19] Bulgakov A. I., Lyapin L. N., “Nekotorye svoistva mnozhestva reshenii integralnogo vklyucheniya Volterra–Gammershteina”, Differents. uravneniya, 14:8 (1978), 1465–1472 | MR | Zbl

[20] Plis A., “Traejectories and quasitrajectories of an orientor field”, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys., 11:6 (1963), 369–370 | MR | Zbl

[21] Suslov S. I., Nelineinyi beng-beng printsip I. Konechnomernyi sluchai, Preprint No 11, In-t matem. SO AN SSSR, Novosibirsk, 1989

[22] Suslov S. I., Nelineinyi beng-beng printsip II. Beskonechnomernyi sluchai, Preprint No 12, In-t matem. SO AN SSSR, Novosibirsk, 1989

[23] Tolstonogov A. A., Chugunov P. I., “O mnozhestve reshenii differentsialnogo vklyucheniya v banakhovom prostranstve”, Sib. matem. zhurn., 24:6 (1983), 144–159 | MR | Zbl

[24] Tolstonogov A. A., Finogenko I. A., “O resheniyakh differentsialnogo vklyucheniya s polunepreryvnoi snizu nevypukloi pravoi chastyu v banakhovom prostranstve”, Matem. sb., 125 (167):2 (1984), 199–230 | MR

[25] Chugunov P. I., “Svoistva reshenii differentsialnykh vklyuchenii i upravlyaemye sistemy”, Prikladnaya matematika i pakety prikladnykh programm, Izd-vo SEISO AN SSSR, Irkutsk, 1980, 155–179

[26] Bressan A., “On a bang-bang principle for nonlinear systems”, Boll. Un. Mat. Ital. Suppl., 1 (1980), 53–59 | MR | Zbl

[27] Hermes H., “On continuous and measurable selections and the existence of solutions of generalized differential equations”, Proc. Amer. Math. Soc., 29:3 (1971), 535–542 | DOI | MR | Zbl

[28] Pianigiani G., “On the fundamental theory of multivalued differential equations”, J. Differential Equations, 25:1 (1977), 30–38 | DOI | MR | Zbl

[29] Bulgakov A. I., Grigorenko A. A., Zhukovskii E. S., “Vozmuschennye vklyucheniya s kompaktnoznachnym otobrazheniem”, Vestn. UdmGU. Matem., mekh., 2000, no. 1, 33–40 | MR

[30] Irisov A. E., Tonkov E. L., “O zamykanii mnozhestva periodicheskikh reshenii differentsialnogo vklyucheniya”, Differentsialnye i integralnye uravneniya, Izd-vo GGU, Gorkii, 1983, 32–38 | MR

[31] Bulgakov A. I., Efremov A. A., Panasenko E. A., “K voprosu ustoichivosti differentsialnykh vklyuchenii”, Vestn. TambGU. Ser. estestv. i tekhnich. nauki, 4:4 (1999), 461–470

[32] Bulgakov A. I., Efremov A. A., Panasenko E. A., “Obyknovennye differentsialnye vklyucheniya s vnutrennimi i vneshnimi vozmuscheniyami”, Differents. uravneniya, 36:12 (2000), 1587–1598 | MR | Zbl

[33] Bulgakov A. I., Puchkov N. P., Skomorokhov V. V., “Priblizhennye resheniya differentsialnogo vklyucheniya s nevypukloi pravoi chastyu”, Vestn. TambGU. Ser. estestv. i tekhnich. nauki, 7:1 (2002), 104–105

[34] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR

[35] Hajek O., “Discontinuous differential equations. I, II”, J. Differential Equations, 32:2 (1979), 149–170 ; 171–185 | DOI | MR | Zbl | Zbl

[36] Bulgakov A. I., “Asimptoticheskoe predstavlenie mnozhestv $\delta$-reshenii differentsialnogo vklyucheniya”, Matem. zametki, 65:5 (1999), 775–778 | MR

[37] Bulgakov A. I., Skomorokhov V. V., “Differentsialnye vklyucheniya s vneshnimi vozmuscheniyami, radius kotorykh zavisit ot fazovoi peremennoi”, Vestn. TambGU. Ser. estestv. i tekhnich. nauki, 5:4 (2000), 429–430 | MR

[38] Efremov A. A., Panasenko E. A., “Ustoichivost periodicheskikh i dvukhtochechnykh kraevykh zadach otnositelno vneshnikh vozmuschenii”, Vestn. TambGU. Ser. estestv. i tekhnich. nauki, 5:4 (2000), 446–447

[39] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl

[40] Polovinkin E. S., Teoriya mnogoznachnykh otobrazhenii, MFTI, M., 1982

[41] Blagodatskikh V. I., “Nekotorye rezultaty po teorii differentsialnykh vklyuchenii”, Summer School on Ordinary Differential Equations, Part II (Czechoslovakia, Brno), 1974, 29–67

[42] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981 | MR

[43] Blagodatskikh V. I., Teoriya differentsialnykh vklyuchenii, Chast I, Izd-vo MGU, M., 1979

[44] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii, Izd-vo VGU, Voronezh, 1986 | MR | Zbl

[45] Bulgakov A. I., “Nekotorye voprosy differentsialnykh i integralnykh vklyuchenii s nevypukloi pravoi chastyu”, Funktsionalno-differentsialnye uravneniya, PPI, Perm, 1991, 28–57 | MR

[46] Arutyunov A. V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl

[47] Hermes H., “The generalised differential equation $\dot x(t)\in R(t,x)$”, Adv. Math., 4:2 (1970), 149–169 | DOI | MR | Zbl

[48] Bulgakov A. I., “Nepreryvnye vetvi mnogoznachnykh otobrazhenii s nevypuklymi obrazami i funktsionalno-differentsialnye vklyucheniya”, Matem. sb., 181:11 (1990), 1427–1442 | MR | Zbl

[49] Bulgakov A. I., “Funktsionalno-differentsialnye vklyucheniya s nevypukloi pravoi chastyu”, Differents. uravneniya, 26:11 (1990), 1872–1878 | MR | Zbl