The structure of a group quasisymmetrically conjugate to a group of affine transformations of the real line
Sbornik. Mathematics, Tome 196 (2005) no. 10, pp. 1403-1420

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the substantiation of a criterion for the quasisymmetric conjugacy of an arbitrary group of homeomorphisms of the real line to a group of affine transformations (the Ahlfors problem). In a criterion suggested by Hinkkanen the constants in the definition of a quasisymmetric homeomorphism were assumed to be uniformly bounded for all elements of the group. Subsequently, for orientation-preserving groups this author put forward a more relaxed criterion, in which one assumes only the uniform boundedness of constants for each cyclic subgroup. In the present paper this relaxed criterion is proved for an arbitrary group of line homeomorphisms, which do not necessarily preserve the orientation.
@article{SM_2005_196_10_a0,
     author = {L. A. Beklaryan},
     title = {The structure of a group quasisymmetrically conjugate to a group of affine transformations of the real line},
     journal = {Sbornik. Mathematics},
     pages = {1403--1420},
     publisher = {mathdoc},
     volume = {196},
     number = {10},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_10_a0/}
}
TY  - JOUR
AU  - L. A. Beklaryan
TI  - The structure of a group quasisymmetrically conjugate to a group of affine transformations of the real line
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1403
EP  - 1420
VL  - 196
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_10_a0/
LA  - en
ID  - SM_2005_196_10_a0
ER  - 
%0 Journal Article
%A L. A. Beklaryan
%T The structure of a group quasisymmetrically conjugate to a group of affine transformations of the real line
%J Sbornik. Mathematics
%D 2005
%P 1403-1420
%V 196
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_10_a0/
%G en
%F SM_2005_196_10_a0
L. A. Beklaryan. The structure of a group quasisymmetrically conjugate to a group of affine transformations of the real line. Sbornik. Mathematics, Tome 196 (2005) no. 10, pp. 1403-1420. http://geodesic.mathdoc.fr/item/SM_2005_196_10_a0/