The structure of a group quasisymmetrically conjugate to a group of affine transformations of the real line
Sbornik. Mathematics, Tome 196 (2005) no. 10, pp. 1403-1420
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to the substantiation of a criterion for the quasisymmetric conjugacy of an arbitrary group of homeomorphisms of the real line to a group of affine transformations (the Ahlfors problem). In a criterion suggested by Hinkkanen the constants in the definition of a quasisymmetric homeomorphism were assumed to be uniformly bounded for all elements of the group. Subsequently, for orientation-preserving groups this author put forward a more relaxed criterion, in which one assumes only the uniform boundedness of constants for each cyclic subgroup. In the present paper this relaxed criterion is proved for an arbitrary group of line homeomorphisms, which do not necessarily preserve the orientation.
@article{SM_2005_196_10_a0,
author = {L. A. Beklaryan},
title = {The structure of a group quasisymmetrically conjugate to a group of affine transformations of the real line},
journal = {Sbornik. Mathematics},
pages = {1403--1420},
publisher = {mathdoc},
volume = {196},
number = {10},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_10_a0/}
}
TY - JOUR AU - L. A. Beklaryan TI - The structure of a group quasisymmetrically conjugate to a group of affine transformations of the real line JO - Sbornik. Mathematics PY - 2005 SP - 1403 EP - 1420 VL - 196 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2005_196_10_a0/ LA - en ID - SM_2005_196_10_a0 ER -
L. A. Beklaryan. The structure of a group quasisymmetrically conjugate to a group of affine transformations of the real line. Sbornik. Mathematics, Tome 196 (2005) no. 10, pp. 1403-1420. http://geodesic.mathdoc.fr/item/SM_2005_196_10_a0/