Criteria for the continuity of finite-dimensional representations
Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1377-1391
Voir la notice de l'article provenant de la source Math-Net.Ru
Necessary and sufficient continuity conditions for
finite-dimensional (not necessarily topological)
representations of connected locally compact groups are obtained.
Namely, it is shown that a finite-dimensional representation of a connected locally compact group is continuous if and only if the oscillation of this representation at the identity element of the group is less than 2.
@article{SM_2004_195_9_a7,
author = {A. I. Shtern},
title = {Criteria for the continuity of finite-dimensional representations},
journal = {Sbornik. Mathematics},
pages = {1377--1391},
publisher = {mathdoc},
volume = {195},
number = {9},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2004_195_9_a7/}
}
A. I. Shtern. Criteria for the continuity of finite-dimensional representations. Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1377-1391. http://geodesic.mathdoc.fr/item/SM_2004_195_9_a7/