Criteria for the continuity of finite-dimensional representations
Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1377-1391 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary and sufficient continuity conditions for finite-dimensional (not necessarily topological) representations of connected locally compact groups are obtained. Namely, it is shown that a finite-dimensional representation of a connected locally compact group is continuous if and only if the oscillation of this representation at the identity element of the group is less than 2.
@article{SM_2004_195_9_a7,
     author = {A. I. Shtern},
     title = {Criteria for the continuity of finite-dimensional representations},
     journal = {Sbornik. Mathematics},
     pages = {1377--1391},
     year = {2004},
     volume = {195},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_9_a7/}
}
TY  - JOUR
AU  - A. I. Shtern
TI  - Criteria for the continuity of finite-dimensional representations
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1377
EP  - 1391
VL  - 195
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_9_a7/
LA  - en
ID  - SM_2004_195_9_a7
ER  - 
%0 Journal Article
%A A. I. Shtern
%T Criteria for the continuity of finite-dimensional representations
%J Sbornik. Mathematics
%D 2004
%P 1377-1391
%V 195
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2004_195_9_a7/
%G en
%F SM_2004_195_9_a7
A. I. Shtern. Criteria for the continuity of finite-dimensional representations. Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1377-1391. http://geodesic.mathdoc.fr/item/SM_2004_195_9_a7/

[1] Shtern A. I., “Kriterii slaboi i silnoi nepreryvnosti predstavlenii topologicheskikh grupp v banakhovykh prostranstvakh”, Matem. sb., 193:9 (2002), 139–156 | MR | Zbl

[2] Shtern A. I., “Continuity of Banach representations in terms of point variations”, Russian J. Math. Phys., 9:2 (2002), 251–253 | MR

[3] Shtern A. I., “Continuity criteria for finite-dimensional representations of compact connected groups”, Adv. Stud. Contemp. Math., 6:2 (2003), 141–156 | MR | Zbl

[4] Shtern A. I., “Continuity conditions for finite-dimensional representations of some compact totally disconnected groups”, Adv. Stud. Contemp. Math. (Kyungshang), 8:1 (2004), 13–22 | MR | Zbl

[5] Hofmann K. H., Morris S. A., The structure of compact groups, Walter de Gruyter, Berlin, 1998 | MR

[6] Khyuitt E., Ross K. A., Abstraktnyi garmonicheskii analiz, t. I, Nauka, M., 1975

[7] Montgomery D., Zippin L., Topological transformation groups, Interscience Publ., New York, 1955 | MR | Zbl

[8] Glushkov V. M., “Struktura lokalno bikompaktnykh grupp i pyataya problema Gilberta”, UMN, 12:2 (1957), 3–41 | MR | Zbl

[9] Ahdout S., Hurwitz C., Itzkowitz G., Rothman S., Strassberg H., “Maximal protori in compact topological groups”, Papers on general topology and applications (Flushing, NY, 1992), Ann. New York Acad. Sci., 728, New York Acad. Sci., New York, 1994, 227–236 | MR | Zbl

[10] Naimark M. A., Teoriya predstavlenii grupp, Nauka, M., 1976 | MR

[11] Paterson A. L. T., Amenability, Math. Surveys Monogr., 29, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl

[12] Stroppel M., “Lie theory for non-Lie groups”, J. Lie Theory, 4:2 (1994), 257–284 | MR | Zbl