Equilibrium measures and Cramer asymptotics
Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1359-1375

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a dynamical system generated by a shift in the space of finite-valued one-sided sequences. We study spectral properties of Perron–Frobenius operators associated with this system, whose potentials on the number of the term of the sequence have power-law dependence. Using these operators, we construct a family of equilibrium probability measures in the phase space having the property of power-law mixing. For these measures we prove a central limit theorem for functions in phase space and a Cramer-type theorem for the probabilities of large deviations. Similar results for the significantly simpler case of exponential decay in the dependence of the potentials on the number of the term of the sequence were previously obtained by the author.
@article{SM_2004_195_9_a6,
     author = {D. S. Sarazhinskii},
     title = {Equilibrium measures and {Cramer} asymptotics},
     journal = {Sbornik. Mathematics},
     pages = {1359--1375},
     publisher = {mathdoc},
     volume = {195},
     number = {9},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_9_a6/}
}
TY  - JOUR
AU  - D. S. Sarazhinskii
TI  - Equilibrium measures and Cramer asymptotics
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1359
EP  - 1375
VL  - 195
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_9_a6/
LA  - en
ID  - SM_2004_195_9_a6
ER  - 
%0 Journal Article
%A D. S. Sarazhinskii
%T Equilibrium measures and Cramer asymptotics
%J Sbornik. Mathematics
%D 2004
%P 1359-1375
%V 195
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_9_a6/
%G en
%F SM_2004_195_9_a6
D. S. Sarazhinskii. Equilibrium measures and Cramer asymptotics. Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1359-1375. http://geodesic.mathdoc.fr/item/SM_2004_195_9_a6/