Equilibrium measures and Cramer asymptotics
Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1359-1375
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a dynamical system generated by a shift in the space of finite-valued one-sided sequences. We study spectral properties of Perron–Frobenius operators associated with this system, whose potentials on the number of the term of the sequence have power-law dependence. Using these operators, we construct a family of equilibrium probability measures in the phase space having the property of power-law mixing. For these measures we prove a central limit theorem for functions in phase space and a Cramer-type theorem for the probabilities of large deviations. Similar results for the significantly simpler case of exponential decay in the dependence of the potentials on the number of the term of the sequence were previously obtained by the author.
@article{SM_2004_195_9_a6,
author = {D. S. Sarazhinskii},
title = {Equilibrium measures and {Cramer} asymptotics},
journal = {Sbornik. Mathematics},
pages = {1359--1375},
year = {2004},
volume = {195},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2004_195_9_a6/}
}
D. S. Sarazhinskii. Equilibrium measures and Cramer asymptotics. Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1359-1375. http://geodesic.mathdoc.fr/item/SM_2004_195_9_a6/
[1] Sarazhinskii D. S., “Invariantnye konusy i sobstvennye vektory operatorov Perrona–Frobeniusa v prostranstvakh gëlderovskikh funktsii”, Vestsi AN Belarusi. Ser. fiz.-matem. navuk, 2002, no. 2, 53–56 | MR
[2] Bouen R., Metody simvolicheskoi dinamiki, Mir, M., 1979
[3] Antonevich A. B., Bakhtin V. I., Lebedev A. V., Sarazhinskii D. S., “Lezhandrov analiz, termodinamicheskii formalizm i spektry operatorov Perrona–Frobeniusa”, Dokl. NAN Belarusi, 390:3 (2003), 1–3 | MR
[4] Bakhtin V. I., “Teorema Kramera s dvumya nevyazkami”, Dokl. NAN Belarusi, 45:6 (2001), 49–53 | MR