Defect of index in the theory of non-local problems and the $\eta$-invariant
Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1321-1358

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with elliptic theory on manifolds the boundary of which is a cover. Non-local boundary value problems are considered and their indices are calculated. The Atiyah–Patodi–Singer problem is studied on such manifolds. For non-trivial covers the defect of the index is calculated. The Poincaré duality is constructed in $K$-theory on the corresponding singular manifolds.
@article{SM_2004_195_9_a5,
     author = {A. Yu. Savin and B. Yu. Sternin},
     title = {Defect of index in the theory of non-local problems and the $\eta$-invariant},
     journal = {Sbornik. Mathematics},
     pages = {1321--1358},
     publisher = {mathdoc},
     volume = {195},
     number = {9},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_9_a5/}
}
TY  - JOUR
AU  - A. Yu. Savin
AU  - B. Yu. Sternin
TI  - Defect of index in the theory of non-local problems and the $\eta$-invariant
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1321
EP  - 1358
VL  - 195
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_9_a5/
LA  - en
ID  - SM_2004_195_9_a5
ER  - 
%0 Journal Article
%A A. Yu. Savin
%A B. Yu. Sternin
%T Defect of index in the theory of non-local problems and the $\eta$-invariant
%J Sbornik. Mathematics
%D 2004
%P 1321-1358
%V 195
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_9_a5/
%G en
%F SM_2004_195_9_a5
A. Yu. Savin; B. Yu. Sternin. Defect of index in the theory of non-local problems and the $\eta$-invariant. Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1321-1358. http://geodesic.mathdoc.fr/item/SM_2004_195_9_a5/