Defect of index in the theory of non-local problems and the $\eta$-invariant
Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1321-1358
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is concerned with elliptic theory on manifolds the boundary
of which is a cover. Non-local boundary value
problems are considered and their
indices are calculated. The Atiyah–Patodi–Singer problem
is studied on such manifolds. For non-trivial covers the defect of the index is calculated.
The Poincaré duality is constructed in $K$-theory on the
corresponding singular manifolds.
@article{SM_2004_195_9_a5,
author = {A. Yu. Savin and B. Yu. Sternin},
title = {Defect of index in the theory of non-local problems and the $\eta$-invariant},
journal = {Sbornik. Mathematics},
pages = {1321--1358},
publisher = {mathdoc},
volume = {195},
number = {9},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2004_195_9_a5/}
}
TY - JOUR AU - A. Yu. Savin AU - B. Yu. Sternin TI - Defect of index in the theory of non-local problems and the $\eta$-invariant JO - Sbornik. Mathematics PY - 2004 SP - 1321 EP - 1358 VL - 195 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2004_195_9_a5/ LA - en ID - SM_2004_195_9_a5 ER -
A. Yu. Savin; B. Yu. Sternin. Defect of index in the theory of non-local problems and the $\eta$-invariant. Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1321-1358. http://geodesic.mathdoc.fr/item/SM_2004_195_9_a5/