Defect of index in the theory of non-local problems and the $\eta$-invariant
Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1321-1358 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with elliptic theory on manifolds the boundary of which is a cover. Non-local boundary value problems are considered and their indices are calculated. The Atiyah–Patodi–Singer problem is studied on such manifolds. For non-trivial covers the defect of the index is calculated. The Poincaré duality is constructed in $K$-theory on the corresponding singular manifolds.
@article{SM_2004_195_9_a5,
     author = {A. Yu. Savin and B. Yu. Sternin},
     title = {Defect of index in the theory of non-local problems and the $\eta$-invariant},
     journal = {Sbornik. Mathematics},
     pages = {1321--1358},
     year = {2004},
     volume = {195},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_9_a5/}
}
TY  - JOUR
AU  - A. Yu. Savin
AU  - B. Yu. Sternin
TI  - Defect of index in the theory of non-local problems and the $\eta$-invariant
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1321
EP  - 1358
VL  - 195
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_9_a5/
LA  - en
ID  - SM_2004_195_9_a5
ER  - 
%0 Journal Article
%A A. Yu. Savin
%A B. Yu. Sternin
%T Defect of index in the theory of non-local problems and the $\eta$-invariant
%J Sbornik. Mathematics
%D 2004
%P 1321-1358
%V 195
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2004_195_9_a5/
%G en
%F SM_2004_195_9_a5
A. Yu. Savin; B. Yu. Sternin. Defect of index in the theory of non-local problems and the $\eta$-invariant. Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1321-1358. http://geodesic.mathdoc.fr/item/SM_2004_195_9_a5/

[1] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry. I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 | DOI | MR | Zbl

[2] Freed D., Melrose R., “A mod $k$ index theorem”, Invent. Math., 107:2 (1992), 283–299 | DOI | MR | Zbl

[3] Higson N., “An approach to $\mathbb Z/k$-index theory”, Internat. J. Math., 1:2 (1990), 189–210 | DOI | MR

[4] Zhang W., “On the $\operatorname{mod}k$ index theorem of Freed and Melrose”, J. Differential Geom., 43:1 (1996), 198–206 | MR | Zbl

[5] Botvinnik B., “Manifolds with singularities accepting a metric of positive scalar curvature”, Geom. Topol., 5 (2001), 683–718 | DOI | MR | Zbl

[6] Rosenberg J., “Groupoid $C^*$-algebras and index theory on manifolds with singularities”, Geom. Dedicata, 100 (2003), 65–84 | DOI | MR | Zbl

[7] Connes A., Noncommutative geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl

[8] Kasparov G., “Equivariant $KK$-theory and the Novikov conjecture”, Invent. Math., 91:1 (1988), 147–201 | DOI | MR | Zbl

[9] Melrose R., Piazza P., “Analytic $K$-theory on manifolds with corners”, Adv. Math., 92:1 (1992), 1–26 | DOI | MR | Zbl

[10] Kawasaki T., “The index of elliptic operators over $V$-manifolds”, Nagoya Math. J., 84 (1981), 135–157 | MR | Zbl

[11] Farsi C., “$K$-theoretical index theorems for orbifolds”, Quart. J. Math. Oxford. Ser. (2), 43 (1992), 183–200 | DOI | MR | Zbl

[12] Antonevich A. B., Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Universitetskoe, Minsk, 1988 | MR | Zbl

[13] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. V. 3: Psevdodifferentsialnye operatory, Mir, M., 1987 | MR

[14] Savin A., Schulze B.-W., Sternin B., The homotopy classification and the index of boundary value problems for general elliptic operators, Preprint No 99/20, Oktober 1999, Univ. Potsdam, Institut für Mathematik

[15] Atiyah M. F., Singer I. M., “The index of elliptic operators. I”, Ann. of Math. (2), 87 (1968), 484–530 | DOI | MR | Zbl

[16] Kohn J., Nirenberg L., “An algebra of pseudo-differential operators”, Comm. Pure Appl. Math., 18 (1965), 269–305 | DOI | MR | Zbl

[17] Mischenko A. S., Vektornye rassloeniya i ikh primeneniya, Nauka, M., 1984 | MR

[18] Hsiung Ch.-Ch., “The signature and $G$-signature of manifolds with boundary”, J. Differential Geom., 6 (1972), 595–598 | MR

[19] Palais R. S., Seminar on the Atiyah–Singer index theorem, Princeton Univ. Press, Princeton, NJ, 1965 | MR | Zbl

[20] Brylinski J.-L., Nistor V., “Cyclic cohomology of etale groupoids”, $K$-Theory, 8 (1994), 341–365 | DOI | MR | Zbl

[21] Higson N., “On the $K$-theory proof of the index theorem”, Index theory and operator algebras, Proc. CBMS regional conference on $K$-homology and index theory (August 1991, Boulder, CO, USA), Contemp. Math., 148, eds. J. Fox et al., Amer. Math. Soc., Providence, RI, 1993, 67–86 | MR | Zbl

[22] Atiyah M. F., Singer I. M., “The index of elliptic operators. IV”, Ann. of Math. (2), 93 (1971), 119–138 | DOI | MR | Zbl

[23] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry. III”, Math. Proc. Cambridge Philos. Soc., 79 (1976), 71–99 | DOI | MR | Zbl

[24] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry. II”, Math. Proc. Cambridge Philos. Soc., 78 (1976), 405–432 | DOI | MR

[25] Atiyah M. F., “Characters and cohomology of finite groups”, Inst. Hautes Études Sci. Publ. Math., 9 (1961), 23–64 | DOI | MR

[26] Savin A., Schulze B.-W., Sternin B., “Elliptic operators in subspaces and the eta invariant”, $K$-Theory, 27:3 (2002), 253–272 | DOI | MR | Zbl

[27] Gilkey P. B., Invariance theory, the heat equation, and the Atiyah–Singer index theorem, CRC Press, Boca Raton, FL, 1995 | MR | Zbl

[28] Donnelly H., “Eta-invariants for $G$-spaces”, Indiana Univ. Math. J., 27 (1978), 889–918 | DOI | MR | Zbl

[29] Atiyah M. F., “Global theory of elliptic operators”, Proc. Int. Conf. Funct. Anal. Rel. Topics (Tokyo, 1969), Univ. Tokyo Press, Tokyo, 1970, 21–30 | MR

[30] Higson N., Roe J., Analytic $K$-homology, Oxford Univ. Press, Oxford, 2000 | MR | Zbl

[31] Solovev Yu. P., Troitskii E. V., $C^*$-algebry i ellipticheskie operatory v differentsialnoi topologii, Faktorial, M., 1996 | MR | Zbl

[32] Baum P., Douglas R. G., “$K$-homology and index theory”, Operator algebras and applications, Proc. Sympos. Pure Math., 38, eds. R. Kadison, Amer. Math. Soc., Providence, RI, 1982, 117–173 | MR

[33] Lawson H. B., Michelsohn M. L., Spin geometry, Princeton Univ. Press, Princeton, NJ, 1989 | MR