On modules over a polynomial ring obtained from representations of finite-dimensional associative algebras. II. The case of a non-perfect field
Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1309-1319 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author's earlier results on the construction of Cohen–Macaulay modules over a polynomial ring that emerged in the study of Cauchy–Fueter equations and was generalized by him from the quaternions to arbitrary finite-dimensional associative algebras are extended to the case of algebras over a non-perfect field. Namely, it is proved that for maximally central algebras (introduced by Azumaya) the resulting modules are Cohen–Macaulay, this construction has other good properties, and this class cannot be enlarged. The calculations of various invariants of the resulting modules in the case of a perfect field remain valid.
@article{SM_2004_195_9_a4,
     author = {O. N. Popov},
     title = {On~modules over a~polynomial ring obtained from representations of finite-dimensional associative algebras. {II.~The} case of a~non-perfect field},
     journal = {Sbornik. Mathematics},
     pages = {1309--1319},
     year = {2004},
     volume = {195},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_9_a4/}
}
TY  - JOUR
AU  - O. N. Popov
TI  - On modules over a polynomial ring obtained from representations of finite-dimensional associative algebras. II. The case of a non-perfect field
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1309
EP  - 1319
VL  - 195
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_9_a4/
LA  - en
ID  - SM_2004_195_9_a4
ER  - 
%0 Journal Article
%A O. N. Popov
%T On modules over a polynomial ring obtained from representations of finite-dimensional associative algebras. II. The case of a non-perfect field
%J Sbornik. Mathematics
%D 2004
%P 1309-1319
%V 195
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2004_195_9_a4/
%G en
%F SM_2004_195_9_a4
O. N. Popov. On modules over a polynomial ring obtained from representations of finite-dimensional associative algebras. II. The case of a non-perfect field. Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1309-1319. http://geodesic.mathdoc.fr/item/SM_2004_195_9_a4/

[1] Popov O. N., “O modulyakh nad koltsom mnogochlenov, poluchaemykh iz predstavlenii konechnomernykh assotsiativnykh algebr”, Matem. sb., 193:3 (2002), 115–134 | MR | Zbl

[2] Serr Zh.-P., “Lokalnaya algebra i teoriya kratnostei”, Matematika. Sb. per., 7:5 (1963), 3–93

[3] Popov O. N., “Snova ob odnoi konstruktsii modulei nad koltsom mnogochlenov”, UMN, 58:2 (2003), 173–174 | MR | Zbl

[4] Azumaya G., Nakayama T., “On absolutely uni-serial algebras”, Japan. J. Math. (N.S.), 19:4 (1948), 263–273 | MR | Zbl

[5] Azumaya G., “On maximally central algebras”, Nagoya Math. J., 2 (1951), 119–150 | MR | Zbl

[6] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR

[7] Kherstein I., Nekommutativnye koltsa, Mir, M., 1972 | MR

[8] Manin Yu. I., Kubicheskie formy, Nauka, M., 1972 | MR

[9] Eisenbud D., Commutative algebra with a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, Berlin, 1995 | MR | Zbl

[10] Van der Varden B. L., Algebra, Nauka, M., 1979 | MR | Zbl

[11] Burbaki N., Algebra, gl. X, Nauka, M., 1987 | MR