Precise solutions of the one-dimensional Monge--Kantorovich problem
Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1291-1307

Voir la notice de l'article provenant de la source Math-Net.Ru

The Monge–Kantorovich problem on finding a measure realizing the transportation of mass from $\mathbb R$ to $\mathbb R$ at minimum cost is considered. The initial and resulting distributions of mass are assumed to be the same and the cost of the transportation of the unit mass from a point $x$ to $y$ is expressed by an odd function $f(x+y)$ that is strictly concave on $\mathbb R_+$. It is shown that under certain assumptions about the distribution of the mass the optimal measure belongs to a certain family of measures depending on countably many parameters. This family is explicitly described: it depends only on the distribution of the mass, but not on $f$. Under an additional constraint on the distribution of the mass the number of the parameters is finite and the problem reduces to the minimization of a function of several variables. Examples of various distributions of the mass are considered.
@article{SM_2004_195_9_a3,
     author = {A. Yu. Plakhov},
     title = {Precise solutions of the one-dimensional {Monge--Kantorovich} problem},
     journal = {Sbornik. Mathematics},
     pages = {1291--1307},
     publisher = {mathdoc},
     volume = {195},
     number = {9},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_9_a3/}
}
TY  - JOUR
AU  - A. Yu. Plakhov
TI  - Precise solutions of the one-dimensional Monge--Kantorovich problem
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1291
EP  - 1307
VL  - 195
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_9_a3/
LA  - en
ID  - SM_2004_195_9_a3
ER  - 
%0 Journal Article
%A A. Yu. Plakhov
%T Precise solutions of the one-dimensional Monge--Kantorovich problem
%J Sbornik. Mathematics
%D 2004
%P 1291-1307
%V 195
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_9_a3/
%G en
%F SM_2004_195_9_a3
A. Yu. Plakhov. Precise solutions of the one-dimensional Monge--Kantorovich problem. Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1291-1307. http://geodesic.mathdoc.fr/item/SM_2004_195_9_a3/