Precise solutions of the one-dimensional Monge--Kantorovich problem
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1291-1307
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The  Monge–Kantorovich problem on
finding a measure realizing the   transportation  of mass
from $\mathbb R$ to $\mathbb R$ at minimum cost is considered. The initial and
resulting distributions of mass are assumed to be the same and the cost
of the transportation  of the unit mass from a point $x$ to $y$ is expressed
by an odd function $f(x+y)$ that is strictly concave on $\mathbb R_+$.
It is shown that under certain assumptions about the distribution of the mass
the optimal measure belongs to a certain family of  measures depending on countably many parameters.
This family is explicitly described: it depends only on the distribution
of the mass, but not on $f$. Under an additional constraint on the  distribution
of the mass
the number of the parameters is finite and the problem reduces to the
minimization of a function of several variables. Examples of various  distributions
of the mass are considered.
			
            
            
            
          
        
      @article{SM_2004_195_9_a3,
     author = {A. Yu. Plakhov},
     title = {Precise solutions of the one-dimensional {Monge--Kantorovich} problem},
     journal = {Sbornik. Mathematics},
     pages = {1291--1307},
     publisher = {mathdoc},
     volume = {195},
     number = {9},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_9_a3/}
}
                      
                      
                    A. Yu. Plakhov. Precise solutions of the one-dimensional Monge--Kantorovich problem. Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1291-1307. http://geodesic.mathdoc.fr/item/SM_2004_195_9_a3/
