Approximation theorem for a~homogeneous
Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1271-1289

Voir la notice de l'article provenant de la source Math-Net.Ru

A simple proof of the well-known approximation theorem for the homogeneous convolution equation is presented. The method used in the proof makes it possible to extend this result to the more general case of vector convolution.
@article{SM_2004_195_9_a2,
     author = {I. F. Krasichkov-Ternovskii},
     title = {Approximation theorem for a~homogeneous},
     journal = {Sbornik. Mathematics},
     pages = {1271--1289},
     publisher = {mathdoc},
     volume = {195},
     number = {9},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_9_a2/}
}
TY  - JOUR
AU  - I. F. Krasichkov-Ternovskii
TI  - Approximation theorem for a~homogeneous
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1271
EP  - 1289
VL  - 195
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_9_a2/
LA  - en
ID  - SM_2004_195_9_a2
ER  - 
%0 Journal Article
%A I. F. Krasichkov-Ternovskii
%T Approximation theorem for a~homogeneous
%J Sbornik. Mathematics
%D 2004
%P 1271-1289
%V 195
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_9_a2/
%G en
%F SM_2004_195_9_a2
I. F. Krasichkov-Ternovskii. Approximation theorem for a~homogeneous. Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1271-1289. http://geodesic.mathdoc.fr/item/SM_2004_195_9_a2/