Approximation theorem for a homogeneous
Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1271-1289 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A simple proof of the well-known approximation theorem for the homogeneous convolution equation is presented. The method used in the proof makes it possible to extend this result to the more general case of vector convolution.
@article{SM_2004_195_9_a2,
     author = {I. F. Krasichkov-Ternovskii},
     title = {Approximation theorem for a~homogeneous},
     journal = {Sbornik. Mathematics},
     pages = {1271--1289},
     year = {2004},
     volume = {195},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_9_a2/}
}
TY  - JOUR
AU  - I. F. Krasichkov-Ternovskii
TI  - Approximation theorem for a homogeneous
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1271
EP  - 1289
VL  - 195
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_9_a2/
LA  - en
ID  - SM_2004_195_9_a2
ER  - 
%0 Journal Article
%A I. F. Krasichkov-Ternovskii
%T Approximation theorem for a homogeneous
%J Sbornik. Mathematics
%D 2004
%P 1271-1289
%V 195
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2004_195_9_a2/
%G en
%F SM_2004_195_9_a2
I. F. Krasichkov-Ternovskii. Approximation theorem for a homogeneous. Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1271-1289. http://geodesic.mathdoc.fr/item/SM_2004_195_9_a2/

[1] Schwartz L., “Théorie générale des fonctions moyenne-périodique”, Ann. of Math. (2), 48:4 (1947), 857–929 | DOI | MR | Zbl

[2] Ehrenpreis L., “Mean periodic functions”, Amer. J. Math., 77:2 (1955), 293–328 | DOI | MR | Zbl

[3] Malgrange B., “Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution”, Ann. Inst. Fourier (Grenoble), 6 (1955–1956), 271–354 | MR

[4] Krasichkov-Ternovskii I. F., “Odnorodnye uravneniya tipa svertki na vypuklykh oblastyakh”, Dokl. AN SSSR, 197 (1971), 1

[5] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR

[6] Yulmukhametov R. S., “Odnorodnye uravneniya svertki”, Dokl. AN SSSR, 316:2 (1991), 312–315 | MR | Zbl

[7] Krivosheev A. S., Napalkov V. V., “Kompleksnyi analiz i operatory svertki”, UMN, 47:6 (288) (1992), 3–58 | MR | Zbl

[8] Yulmukhametov R. S., Asimptotika plyurisubgarmonicheskikh funktsii, Preprint, Ufa, 1986 | MR

[9] Yulmukhametov R. S., Odnorodnye uravneniya svertki, Preprint, Ufa, 1990

[10] Sibony N., “Approximation polynomiale ponderee dans un domaine d'holomophy de $\mathbb C^n$”, Ann. Inst. Fourier (Grenoble), 26:2 (1976), 71–99 | MR | Zbl

[11] Sebashtyan-i-Silva Zh., “O nekotorykh klassakh lokalno-vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Matematika. Sb. per., 1:1 (1957), 60–77

[12] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969

[13] Krasichkov-Ternovskii I. F., “Fundamentalnyi printsip dlya invariantnykh podprostranstv analiticheskikh funktsii. II”, Matem. sb., 188:6 (1997), 57–98 | MR

[14] Krasichkov-Ternovskii I. F., “Spektralnyi sintez i lokalnoe opisanie dlya mnogikh peremennykh”, Izv. RAN. Ser. matem., 63:4 (1999), 101–130 | MR

[15] Shishkin A. B., “Spektralnyi sintez dlya sistem differentsialnykh operatorov s postoyannymi koeffitsientami. Teoriya dvoistvennosti”, Matem. sb., 189:9 (1998), 143–160 | MR | Zbl

[16] Krasichkov-Ternovskii I. F., “Spektralnyi sintez analiticheskikh funktsii na sistemakh vypuklykh oblastei”, Matem. sb., 111:1 (1980), 3–41 | MR