Volterra inequalities in function spaces
Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1235-1251 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present results on local solubility, extendability of solutions, and the existence of upper and lower solutions of equations with monotonic generalized Volterra operators in Banach function spaces. These results are analogous to the well-known theorems on the integral and differential inequality and can be used for estimating solutions of various functional-differential equations.
@article{SM_2004_195_9_a0,
     author = {E. S. Zhukovskii},
     title = {Volterra inequalities in~function spaces},
     journal = {Sbornik. Mathematics},
     pages = {1235--1251},
     year = {2004},
     volume = {195},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_9_a0/}
}
TY  - JOUR
AU  - E. S. Zhukovskii
TI  - Volterra inequalities in function spaces
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1235
EP  - 1251
VL  - 195
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_9_a0/
LA  - en
ID  - SM_2004_195_9_a0
ER  - 
%0 Journal Article
%A E. S. Zhukovskii
%T Volterra inequalities in function spaces
%J Sbornik. Mathematics
%D 2004
%P 1235-1251
%V 195
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2004_195_9_a0/
%G en
%F SM_2004_195_9_a0
E. S. Zhukovskii. Volterra inequalities in function spaces. Sbornik. Mathematics, Tome 195 (2004) no. 9, pp. 1235-1251. http://geodesic.mathdoc.fr/item/SM_2004_195_9_a0/

[1] Chaplygin S. A., Novyi metod priblizhennogo integrirovaniya differentsialnykh uravnenii, Gostekhizdat, M.–L., 1950

[2] Azbelev N. V., “O granitsakh primenimosti teoremy Chaplygina o differentsialnykh neravenstvakh”, Matem. sb., 39 (81) (1956), 161–178 | MR | Zbl

[3] Azbelev N. V., Tsalyuk Z. B., “Ob integralnykh neravenstvakh”, Matem. sb., 56 (98) (1962), 325–342 | MR

[4] Kurpel N. S., Shuvar B. A., Dvustoronnie operatornye neravenstva i ikh primeneniya, Naukova dumka, Kiev, 1980 | MR | Zbl

[5] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl

[6] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Elementy sovremennoi teorii funktsionalno-differentsialnykh uravnenii. Metody i prilozheniya, Institut kompyuternykh issledovanii, M., 2002

[7] Azbelev N. V., Rakhmatullina L. F., “K voprosu o funktsionalno-differentsialnykh neravenstvakh i monotonnykh operatorakh”, Funktsionalno-differentsialnye uravneniya, Izd-vo Permskogo politekhn. in-ta, Perm, 1986, 3–9 | MR

[8] Zhukovskii E. S., “Ob integralnykh neravenstvakh v prostranstvakh summiruemykh funktsii”, Differents. uravneniya, 18:4 (1982), 580–584 | MR | Zbl

[9] Zhukovskaya T. V., Zhukovskii E. S., “Monotonnye operatory i razreshimost funktsionalno-differentsialnykh uravnenii”, Vestn. Tambovskogo un-ta. Ser. estestv. i tekhn. nauki, 3, no. 2, Izd-vo TGU, Tambov, 1998, 171–176

[10] Shindyapin A. I., “O kraevoi zadache dlya odnogo singulyarnogo uravneniya”, Differents. uravneniya, 20:3 (1984), 450–455 | MR | Zbl

[11] Anokhin A. V., “O lineinykh impulsnykh sistemakh dlya funktsionalno-differentsialnykh uravnenii”, Dokl. AN SSSR, 28:5 (1986), 1037–1040 | MR

[12] Rumyantsev A. N., “Issledovanie razreshimosti kraevykh zadach s primeneniem vektornykh apriornykh neravenstv pri nalichii impulsnykh vozmuschenii”, Izv. vuzov. Ser. matem., 1996, no. 6, 75–82

[13] Gusarenko S. A., Zhukovskii E. S., Maksimov V. P., “K teorii funktsionalno-differentsialnykh uravnenii s lokalno volterrovymi operatorami”, Dokl. AN SSSR, 287:2 (1986), 268–272 | MR | Zbl

[14] Draiver R. D., “Topologii dlya uravnenii neitralnogo tipa i klassicheskaya elektrodinamika”, Differentsialnye uravneniya s otklonyayuschimsya argumentom, Naukova dumka, Kiev, 1977, 113–127 | MR

[15] Berschanskii Ya. M., “Traektorii lineinykh sistem s nelineinostyu tipa rele”, Avtomatika i telemekhanika, 1982, no. 7, 19–27 | Zbl

[16] Fuller A. T., “Optimizatsiya releinykh sistem regulirovaniya po razlichnym kriteriyam kachestva”, Teoriya diskretnykh optimalnykh i samonastraivayuschikhsya sistem, Trudy I kongressa IFAK, Izd-vo AN SSSR, M., 1961, 584–605

[17] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR

[18] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[19] Tikhonov A. N., “O funktsionalnykh uravneniyakh tipa Volterra i ikh primeneniyakh k nekotorym zadacham matematicheskoi fiziki”, Byul. Mosk. un-ta. Sekts. A, 1:8 (1938), 1–25 | MR | Zbl

[20] Brodskii M. S., Treugolnye i zhordanovy predstavleniya lineinykh operatorov, Nauka, M., 1969 | MR

[21] Bukhgeim A. L., Uravneniya Volterra i obratnye zadachi, Nauka, Novosibirsk, 1983 | MR

[22] Gokhberg I. Ts., Krein M. G., Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967 | MR

[23] Gusarenko S. A., “Ob odnom obobschenii ponyatiya volterrova operatora”, Dokl. AN SSSR, 295:5 (1987), 1046–1049 | MR | Zbl

[24] Zhukovskii E. S., “K teorii uravnenii Volterra”, Differents. uravneniya, 25:9 (1989), 1599–1605 | MR | Zbl

[25] Zhukovskii E. S., “Volterrovost i spektralnye svoistva operatora vnutrennei superpozitsii”, Differents. uravneniya, 30:2 (1994), 147–149 | MR

[26] Zhukovskii E. S., Lineinye evolyutsionnye funktsionalno-differentsialnye uravneniya v banakhovom prostranstve, Izd-vo TGU, Tambov, 2003

[27] Kurbatov V. G., Lineinye differentsialno-raznostnye uravneniya, Izd-vo VGU, Voronezh, 1990 | MR | Zbl

[28] Livshits M. S., “O spektralnom razlozhenii lineinykh nesamosopryazhennykh operatorov”, Matem. sb., 34 (76) (1954), 145–198

[29] Sumin V. I., “Funktsionalno-operatornye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami”, Dokl. AN SSSR, 305:5 (1989), 1056–1059 | MR | Zbl

[30] Filippov A. F., “Differentsialnye uravneniya s razryvnoi pravoi chastyu”, Matem. sb., 51 (93) (1960), 99–128 | Zbl

[31] Shragin I. V., “Izmeryaemost superpozitsii razryvnykh funktsii”, Trudy Tamb. in-ta khim. mashinostroeniya, 1969, 6–8