Holomorphic solution semigroups for Sobolev-type equations in locally convex spaces
Sbornik. Mathematics, Tome 195 (2004) no. 8, pp. 1205-1234 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the existence of an exponentially bounded solution semigroup strongly holomorphic in a sector is studied for a Sobolev-type linear equation \begin{equation} L\dot u=Mu \end{equation} with continuous operator $L\colon\mathfrak U\to\mathfrak F$, $\ker L\ne\{0\}$, and closed densely defined operator $M\colon\operatorname{dom}M\to\mathfrak F$, where $\mathfrak U$ and $\mathfrak F$ are sequentially complete locally convex spaces. It is shown that the condition of the $(L,p)$-sectoriality of the operator $M$, which generalizes the well known condition of sectoriality, is necessary and sufficient for the existence of such semigroups degenerate at the $M$-associated vectors of the operator $L$ of height $p$ and lower and the existence of pairs of invariant subspaces of the operators $L$ and $M$. Generalizations of Yosida's theorem and results on the existence of a holomorphic solution semigroup for equation (1) in Banach spaces are obtained. These results are used in the study of the weakened Cauchy problem for equation (1) and for the corresponding non-linear equation. One application of the abstract results is a theorem on sufficient conditions for the solubility of the Cauchy problem for a class of equations in Fréchet spaces of a special kind. It is used in the analysis of the periodic Cauchy problem for a partial differential equation with displacement not solved with respect to the time derivative.
@article{SM_2004_195_8_a3,
     author = {V. E. Fedorov},
     title = {Holomorphic solution semigroups for {Sobolev-type} equations in~locally convex spaces},
     journal = {Sbornik. Mathematics},
     pages = {1205--1234},
     year = {2004},
     volume = {195},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_8_a3/}
}
TY  - JOUR
AU  - V. E. Fedorov
TI  - Holomorphic solution semigroups for Sobolev-type equations in locally convex spaces
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1205
EP  - 1234
VL  - 195
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_8_a3/
LA  - en
ID  - SM_2004_195_8_a3
ER  - 
%0 Journal Article
%A V. E. Fedorov
%T Holomorphic solution semigroups for Sobolev-type equations in locally convex spaces
%J Sbornik. Mathematics
%D 2004
%P 1205-1234
%V 195
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2004_195_8_a3/
%G en
%F SM_2004_195_8_a3
V. E. Fedorov. Holomorphic solution semigroups for Sobolev-type equations in locally convex spaces. Sbornik. Mathematics, Tome 195 (2004) no. 8, pp. 1205-1234. http://geodesic.mathdoc.fr/item/SM_2004_195_8_a3/

[1] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[2] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[3] Klement F., Kheimans Kh., Angenent S., van Duin K., de Pakhter B., Odnoparametricheskie polugruppy, Mir, M., 1992 | MR

[4] Kostin V. A., “K teoreme Solomyaka–Iosidy dlya analiticheskikh polugrupp”, Algebra i analiz, 11:1 (1999), 118–140 | MR | Zbl

[5] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[6] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998 | MR | Zbl

[7] Favini A., Yagi A., Degenerate differential equations in Banach spaces, Marcel Dekker Inc., New York, 1999 | MR | Zbl

[8] Egorov I. E., Pyatkov S. G., Popov S. V., Neklassicheskie differentsialno-operatornye uravneniya, Nauka, Novosibirsk, 2000 | MR

[9] Sviridyuk G. A., “K obschei teorii polugrupp operatorov”, UMN, 49:4 (1994), 47–74 | MR | Zbl

[10] Sviridyuk G. A., Fedorov V. E., “O edinitsakh analiticheskikh polugrupp operatorov s yadrami”, Sib. matem. zhurn., 39:3 (1998), 604–616 | MR | Zbl

[11] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka 1965, M. | MR

[12] Fedorov V. E., “Vyrozhdennye silno nepreryvnye polugruppy operatorov”, Algebra i analiz, 12:3 (2000), 173–200 | MR

[13] Zorich V. A., Matematicheskii analiz. II, Nauka, M., 1984 | MR

[14] Titchmarsh E., Vvedenie v teoriyu integralov Fure, Gostekhizdat, M., 1948

[15] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962

[16] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977

[17] Radyno Ya. V., Lineinye uravneniya i bornologiya, Izd-vo BGU, Minsk, 1982 | MR | Zbl

[18] Volevich L. R., Gindikin S. G., Obobschennye funktsii i uravneniya v svertkakh, Fizmatlit, M., 1994 | MR | Zbl