On~the~topology of~stable corank~1 singularities on the boundary of~a~connected component of the~complement to a~front
Sbornik. Mathematics, Tome 195 (2004) no. 8, pp. 1165-1203

Voir la notice de l'article provenant de la source Math-Net.Ru

Constraints on the position of singularities on the boundary of a connected component of the complement to a wave front are studied. The boundary of the component is assumed to be the compact boundary of a manifold, and the front is assumed to have only stable corank 1 singularities at points of the boundary. Under these assumptions linear relations are found between the Euler numbers of the manifolds of singularities on the boundary of a fixed component. In particular, all universal linear relations between the Euler numbers of the manifolds of singularities on the boundaries of elliptic and hyperbolic connected components of the complement to a front are found.
@article{SM_2004_195_8_a2,
     author = {V. D. Sedykh},
     title = {On~the~topology of~stable corank~1 singularities on the boundary of~a~connected component of the~complement to a~front},
     journal = {Sbornik. Mathematics},
     pages = {1165--1203},
     publisher = {mathdoc},
     volume = {195},
     number = {8},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_8_a2/}
}
TY  - JOUR
AU  - V. D. Sedykh
TI  - On~the~topology of~stable corank~1 singularities on the boundary of~a~connected component of the~complement to a~front
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1165
EP  - 1203
VL  - 195
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_8_a2/
LA  - en
ID  - SM_2004_195_8_a2
ER  - 
%0 Journal Article
%A V. D. Sedykh
%T On~the~topology of~stable corank~1 singularities on the boundary of~a~connected component of the~complement to a~front
%J Sbornik. Mathematics
%D 2004
%P 1165-1203
%V 195
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_8_a2/
%G en
%F SM_2004_195_8_a2
V. D. Sedykh. On~the~topology of~stable corank~1 singularities on the boundary of~a~connected component of the~complement to a~front. Sbornik. Mathematics, Tome 195 (2004) no. 8, pp. 1165-1203. http://geodesic.mathdoc.fr/item/SM_2004_195_8_a2/