On the topology of stable corank 1 singularities on the boundary of a connected component of the complement to a front
Sbornik. Mathematics, Tome 195 (2004) no. 8, pp. 1165-1203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Constraints on the position of singularities on the boundary of a connected component of the complement to a wave front are studied. The boundary of the component is assumed to be the compact boundary of a manifold, and the front is assumed to have only stable corank 1 singularities at points of the boundary. Under these assumptions linear relations are found between the Euler numbers of the manifolds of singularities on the boundary of a fixed component. In particular, all universal linear relations between the Euler numbers of the manifolds of singularities on the boundaries of elliptic and hyperbolic connected components of the complement to a front are found.
@article{SM_2004_195_8_a2,
     author = {V. D. Sedykh},
     title = {On~the~topology of~stable corank~1 singularities on the boundary of~a~connected component of the~complement to a~front},
     journal = {Sbornik. Mathematics},
     pages = {1165--1203},
     year = {2004},
     volume = {195},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_8_a2/}
}
TY  - JOUR
AU  - V. D. Sedykh
TI  - On the topology of stable corank 1 singularities on the boundary of a connected component of the complement to a front
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1165
EP  - 1203
VL  - 195
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_8_a2/
LA  - en
ID  - SM_2004_195_8_a2
ER  - 
%0 Journal Article
%A V. D. Sedykh
%T On the topology of stable corank 1 singularities on the boundary of a connected component of the complement to a front
%J Sbornik. Mathematics
%D 2004
%P 1165-1203
%V 195
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2004_195_8_a2/
%G en
%F SM_2004_195_8_a2
V. D. Sedykh. On the topology of stable corank 1 singularities on the boundary of a connected component of the complement to a front. Sbornik. Mathematics, Tome 195 (2004) no. 8, pp. 1165-1203. http://geodesic.mathdoc.fr/item/SM_2004_195_8_a2/

[1] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, t. 1, Nauka, M., 1982 | MR

[2] Vasilev V. A., Lagranzhevy i lezhandrovy kharakteristicheskie klassy, MTsNMO, M., 2000

[3] Kazaryan M. E., “Kharakteristicheskie klassy lagranzhevykh i lezhandrovykh osobennostei”, UMN, 50:4 (1995), 45–70 | MR | Zbl

[4] Sedykh V. D., “Razreshenie osobennostei koranga 1 fronta obschego polozheniya”, Funkts. analiz i ego prilozh., 37:2 (2003), 52–64 | MR | Zbl

[5] Sedykh V. D., “Sootnosheniya mezhdu eilerovymi kharakteristikami mnogoobrazii osobennostei koranga 1 fronta obschego polozheniya”, Dokl. RAN, 383:6 (2002), 735–739 | MR | Zbl

[6] Mazer Dzh., “Stratifikatsii i otobrazheniya”, UMN, 27:5 (1972), 85–118 | MR

[7] Kleiman S. L., “Multiple-point formulas I: Iteration”, Acta Math., 147:1–2 (1981), 13–49 | DOI | MR | Zbl

[8] Marar W. L., Mond D., “Multiple-point schemes for corank 1 maps”, J. London Math. Soc. (2), 39:3 (1989), 553–567 | DOI | MR | Zbl

[9] Goryunov V., Mond D., “Vanishing cohomology of singularities of mappings”, Compositio Math., 89:1 (1993), 45–80 | MR | Zbl

[10] Romero Fuster M. C., “Sphere stratifications and the Gauss map”, Proc. Roy. Soc. Edinburgh Sect. A, 95 (1983), 115–136 | MR | Zbl

[11] Arnold V. I., “Kriticheskie tochki funktsii na mnogoobrazii s kraem, prostye gruppy Li $B_k$, $C_k$, $F_4$ i osobennosti evolyut”, UMN, 33:5 (1978), 91–105 | MR | Zbl

[12] Lojasiewicz S., Ensembles semi-analitiques, IHES, Bure sur Yvette, 1965

[13] Wall C. T. C., “Stratified sets: a survey”, Lecture Notes in Math., 192, 1971, 133–140

[14] Zakalyukin V. M., Osobennosti lagranzhevykh i lezhandrovykh otobrazhenii, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1977

[15] Arnold V. I., “Plane curves, their invariants, perestroikas and classifications”, Adv. in Sov. Math., 21 (1994), 33–91 | MR | Zbl