On isotopic realizability of maps factored through a hyperplane
Sbornik. Mathematics, Tome 195 (2004) no. 8, pp. 1117-1163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the isotopic realization problem, which is the question of isotopic realizability of a given (continuous) map $f$, that is, the possibility of a uniform approximation of $f$ by a continuous family of embeddings $g_t$, $t\in[0,\infty)$, under the condition that $f$ is discretely realizable, that is, that there exists a uniform approximation of $f$ by a sequence of embeddings $h_n$, $n\in\mathbb N$. For each $n\geqslant3$ a map $f\colon S^n\to\mathbb R^{2n}$ is constructed that is discretely but not isotopically realizable and which, unlike all such previously known examples, is a locally flat topological immersion. For each $n\geqslant4$ a map $f\colon S^n\to\mathbb R^{2n-1}\subset\mathbb R^{2n}$ is constructed that is discretely but not isotopically realizable. It is shown that for $n\equiv0,\,1\pmod4$ any map $f\colon S^n\to\mathbb R^{2n-2}\subset\mathbb R^{2n}$ is isotopically realizable, and for $n\equiv2\pmod4$, so also is every map $f\colon S^n\to\mathbb R^{2n-3}\subset\mathbb R^{2n}$. If $n\geqslant13$ and $n+1$ is not a power of $2$, an arbitrary map $f\colon S^n\to\mathbb R^{5[n/3]+3}\subset\mathbb R^{2n}$ is isotopically realizable. The main results are devoted to the isotopic realization problem for maps $f$ of the form $S^n\stackrel{f}\to S^n\subset\mathbb R^{2n}$, $n=2^l-1$. It is established that if it has a negative solution, then the inverse images of points under the map $f$ have a certain homology property connected with actions of the group of $p$-adic integers. The solution is affirmative if $f$ is Lipschitzian and its van Kampen–Skopenkov thread has finite order. In connection with the proof the functors $\operatorname{Ext}_{\square}$ and $\operatorname{Ext}_{\bowtie}$ in the relative homology algebra of inverse spectra are introduced.
@article{SM_2004_195_8_a1,
     author = {S. A. Melikhov},
     title = {On isotopic realizability of maps factored through a~hyperplane},
     journal = {Sbornik. Mathematics},
     pages = {1117--1163},
     year = {2004},
     volume = {195},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_8_a1/}
}
TY  - JOUR
AU  - S. A. Melikhov
TI  - On isotopic realizability of maps factored through a hyperplane
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1117
EP  - 1163
VL  - 195
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_8_a1/
LA  - en
ID  - SM_2004_195_8_a1
ER  - 
%0 Journal Article
%A S. A. Melikhov
%T On isotopic realizability of maps factored through a hyperplane
%J Sbornik. Mathematics
%D 2004
%P 1117-1163
%V 195
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2004_195_8_a1/
%G en
%F SM_2004_195_8_a1
S. A. Melikhov. On isotopic realizability of maps factored through a hyperplane. Sbornik. Mathematics, Tome 195 (2004) no. 8, pp. 1117-1163. http://geodesic.mathdoc.fr/item/SM_2004_195_8_a1/

[1] Siekłucki K., “Realization of mappings”, Fund. Math., 65:3 (1969), 325–343 | MR | Zbl

[2] Schepin E. V., Shtanko M. A., “Spektralnyi kriterii vlozhimosti kompaktov v evklidovo prostranstvo”, Trudy Leningradskoi mezhdunarodnoi topologicheskoi konferentsii, Nauka, L., 1983, 135–142

[3] Akhmetev P. M., “Ob izotopicheskoi i diskretnoi realizatsii otobrazhenii $n$-sfery v evklidovom prostranstve”, Matem. sb., 187:7 (1996), 3–34 | MR | Zbl

[4] Mekikhov S. A., “On maps with unstable singularities”, Topology Appl., 120 (2002), 105–156 ; math.GT/0101047 | DOI | MR

[5] Melikhov S. A., “Izotopicheskaya i nepreryvnaya realizuemost otobrazhenii v metastabilnom range”, Matem. sb., 195:7 (2004), 71–104 | MR

[6] Akhmetev P. M., “Vlozheniya kompaktov, stabilnye gomotopicheskie gruppy sfer i teoriya osobennostei”, UMN, 55:3 (2000), 3–62 | MR | Zbl

[7] Akhmetev P. M., Melikhov S. A., “Ob izotopicheskoi realizuemosti nepreryvnykh otobrazhenii”, Zapiski nauch. sem. POMI, 267, 2000, 53–87 ; “Исправление” (в печати); J. Math. Sci. (New York), 113 (2003), 759–776 | MR | Zbl | DOI

[8] Melikhov S. A., Mikhailov R. V., “Zatsepleniya po modulyu uzlov i problema izotopicheskoi realizatsii”, UMN, 56:2 (2001), 219–220 | MR | Zbl

[9] Melikhov S. A., Repovš D., “$n$-quasi-isotopy. I: Questions of nilpotence”, J. Knot Theory Ramifications, 14:5 (2005), 571–602 ; math.GT/0103113 | DOI | MR | Zbl

[10] Akhmetiev P. M., Szűcs A., “Geometric proof of the easy part of the Hopf invariant one theorem”, Math. Slovaca, 49:1 (1999), 71–74 | MR

[11] Melikhov S. A., Sphere eversions and realization of mappings, math.GT/0305158 | MR

[12] Akhmet'ev P. M., Repovš D., Skopenkov A. B., “Obstructions to approximating maps of $n$-manifolds into $\mathbb R^{2n}$ by embeddings”, Topology Appl., 123 (2002), 3–14 | DOI | MR

[13] Zeeman E. C., “Unknotting combinatorial balls”, Ann. of Math. (2), 78 (1963), 501–526 | DOI | MR | Zbl

[14] Edwards R. D., “The equivalence of close piecewise-linear embeddings”, General Topology Appl., 5 (1975), 147–180 | DOI | MR | Zbl

[15] Koschorke U., Sanderson B., “Geometric interpretations of the generalized Hopf invariant”, Math. Scand., 41 (1977), 199–217 | MR

[16] Akhmetiev P. M., “Pontryagin–Thom construction for approximation of mappings by embeddings”, Topology Appl., 140:2–3 (2004), 133–149 (to appear) | DOI | MR | Zbl

[17] Adem J., “The iteration of the Steenrod squares in algebraic topology”, Proc. Nat. Acad. Sci. USA, 38:8 (1952), 720–726 | DOI | MR | Zbl

[18] Akhmetev P. M., “Geometricheskii podkhod k stabilnym gomotopicheskim gruppam sfer. Invarianty Khopfa–Adamsa” (to appear)

[19] Repovš D., Skopenkov A. B., “A deleted product criterion for approximability of maps by embeddings”, Topology Appl., 87 (1998), 1–19 | DOI | MR | Zbl

[20] Yang C.-T., “$p$-adic transformation groups”, Michigan Math. J., 7 (1960), 201–218 | DOI | MR | Zbl

[21] Maklein S., Gomologiya, Mir, M., 1966

[22] Bredon G., Teoriya puchkov, Nauka, M., 1988 | MR | Zbl

[23] Massi U., Teoriya gomologii i kogomologii, Mir, M., 1981 | MR

[24] Repovsh D., Skopenkov A. B., “Novye rezultaty o vlozheniyakh poliedrov i mnogoobrazii v evklidovy prostranstva”, UMN, 54:6 (1999), 61–108 | MR | Zbl

[25] Krushkal V. S., “Embedding obstructions and $4$-dimensional thickenings of 2-complexes”, Proc. Amer. Math. Soc., 128 (2000), 3683–3691 ; math.GT/0004058 | DOI | MR | Zbl

[26] Bestvina M., Kapovich M., Kleiner B., “Van Kampen's embedding obstruction for discrete groups”, Invent. Math., 150 (2002), 219–235 | DOI | MR | Zbl

[27] Conner P. E., Floyd E. E., “Fixed point free involutions and equivariant maps”, Bull. Amer. Math. Soc., 66:6 (1960), 416–441 | DOI | MR | Zbl

[28] Geoghegan R., “A note on the vanishing of lim$^1$”, J. Pure Appl. Algebra, 17 (1980), 113–116 | DOI | MR | Zbl

[29] Jensen C. U., Les foncteurs dérives de $\varprojlim$ et leurs applications en théorie des modules, Lecture Notes in Math., 254, Springer-Verlag, Berlin, 1972 | MR | Zbl

[30] Hughes B., Ranicki A., Ends of complexes, Cambridge Tracts in Math., 123, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl

[31] Kuzminov V. I., “O proizvodnykh funktorakh funktora proektivnogo predela”, Sib. matem. zhurn., 8:3 (1967), 333–345 | MR | Zbl

[32] Gray B. I., “Spaces of the same $n$-type, for all $n$”, Topology, 5 (1966), 241–243 | DOI | MR | Zbl

[33] Kharlap A. E., “Lokalnye gomologii i kogomologii, gomologicheskaya razmernost i obobschennye mnogoobraziya”, Matem. sb., 96:3 (1975), 347–373 | MR | Zbl

[34] Giiu L., Maren A., “Kommentarii k chetyrem statyam V. A. Rokhlina: II. O tretei state”, V poiskakh utrachennoi topologii, Mir, M., 1989, 65–92 | MR

[35] Miller J. G., “Self-intersections of some immersed manifolds”, Trans. Amer. Math. Soc., 136 (1969), 329–338 | DOI | MR | Zbl

[36] Repovš D., Skopenkov A. B., “On projected embeddings and desuspending the $\alpha$-invariant”, Topology Appl., 124 (2002), 69–75 | DOI | MR | Zbl

[37] Massey W., “On the Stiefel–Whitney classes of a manifold”, Amer J. Math., 82 (1960), 92–102 | DOI | MR | Zbl

[38] Gromov M., Differentsialnye sootnosheniya s chastnymi proizvodnymi, Mir, M., 1990 | MR

[39] Rourke C. P., Sanderson B. J., “The compression theorem. I”, Geom. Topol., 5 (2001), 399–429 | DOI | MR | Zbl

[40] Edwards D. A., Hastings H. M., Čech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Math., 542, Springer-Verlag, Berlin, 1976 | MR | Zbl

[41] Fuks L., Beskonechnye abelevy gruppy, t. 1, Mir, M., 1974

[42] Svittser R. M., Algebraicheskaya topologiya – gomotopii i gomologii, Nauka, M., 1985 | MR

[43] Gottlieb D. H., “Fiber bundles and the Euler characteristic”, J. Differential Geom., 10:1 (1975), 39–48 | MR | Zbl