On~Jackson's inequality for a~generalized modulus of continuity in~$L_2$
Sbornik. Mathematics, Tome 195 (2004) no. 8, pp. 1073-1115
Voir la notice de l'article provenant de la source Math-Net.Ru
The value of the sharp constant $\varkappa$ in the Jackson type inequality in the space $L_2(\mathbb T^d)$
\begin{equation}
E_{n-1}(f)\leqslant\varkappa\overline\omega_\psi(f,T)
\end{equation}
is studied for the generalized modulus of continuity
$$
\overline\omega_\psi(f,T)=\max_{t\in T}\biggl(\sum_{s}\psi(st)|\widehat f_s|^2\biggr)^{1/2}.
$$
The value $\overset{*}{\varkappa}$ of the minimum sharp constant
in inequality (1) is found.
A class of generalized moduli of continuity is introduced which contains the moduli
$\widetilde\omega_{a,r}(f,\delta):=\sup_{0\leqslant t\leqslant\delta}\|\Delta_{a^{r-1}t}\dotsb
\Delta_{at}\Delta_{t}f\|_2$,
with even $a$.
The relation $\varkappa=\overset{*}\varkappa$ is proved in this class for all $\delta\geqslant\pi/n$.
@article{SM_2004_195_8_a0,
author = {A. I. Kozko and A. V. Rozhdestvenskii},
title = {On~Jackson's inequality for a~generalized modulus of continuity in~$L_2$},
journal = {Sbornik. Mathematics},
pages = {1073--1115},
publisher = {mathdoc},
volume = {195},
number = {8},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2004_195_8_a0/}
}
TY - JOUR AU - A. I. Kozko AU - A. V. Rozhdestvenskii TI - On~Jackson's inequality for a~generalized modulus of continuity in~$L_2$ JO - Sbornik. Mathematics PY - 2004 SP - 1073 EP - 1115 VL - 195 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2004_195_8_a0/ LA - en ID - SM_2004_195_8_a0 ER -
A. I. Kozko; A. V. Rozhdestvenskii. On~Jackson's inequality for a~generalized modulus of continuity in~$L_2$. Sbornik. Mathematics, Tome 195 (2004) no. 8, pp. 1073-1115. http://geodesic.mathdoc.fr/item/SM_2004_195_8_a0/