On~Jackson's inequality for a~generalized modulus of continuity in~$L_2$
Sbornik. Mathematics, Tome 195 (2004) no. 8, pp. 1073-1115

Voir la notice de l'article provenant de la source Math-Net.Ru

The value of the sharp constant $\varkappa$ in the Jackson type inequality in the space $L_2(\mathbb T^d)$ \begin{equation} E_{n-1}(f)\leqslant\varkappa\overline\omega_\psi(f,T) \end{equation} is studied for the generalized modulus of continuity $$ \overline\omega_\psi(f,T)=\max_{t\in T}\biggl(\sum_{s}\psi(st)|\widehat f_s|^2\biggr)^{1/2}. $$ The value $\overset{*}{\varkappa}$ of the minimum sharp constant in inequality (1) is found. A class of generalized moduli of continuity is introduced which contains the moduli $\widetilde\omega_{a,r}(f,\delta):=\sup_{0\leqslant t\leqslant\delta}\|\Delta_{a^{r-1}t}\dotsb \Delta_{at}\Delta_{t}f\|_2$, with even $a$. The relation $\varkappa=\overset{*}\varkappa$ is proved in this class for all $\delta\geqslant\pi/n$.
@article{SM_2004_195_8_a0,
     author = {A. I. Kozko and A. V. Rozhdestvenskii},
     title = {On~Jackson's inequality for a~generalized modulus of continuity in~$L_2$},
     journal = {Sbornik. Mathematics},
     pages = {1073--1115},
     publisher = {mathdoc},
     volume = {195},
     number = {8},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_8_a0/}
}
TY  - JOUR
AU  - A. I. Kozko
AU  - A. V. Rozhdestvenskii
TI  - On~Jackson's inequality for a~generalized modulus of continuity in~$L_2$
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1073
EP  - 1115
VL  - 195
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_8_a0/
LA  - en
ID  - SM_2004_195_8_a0
ER  - 
%0 Journal Article
%A A. I. Kozko
%A A. V. Rozhdestvenskii
%T On~Jackson's inequality for a~generalized modulus of continuity in~$L_2$
%J Sbornik. Mathematics
%D 2004
%P 1073-1115
%V 195
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_8_a0/
%G en
%F SM_2004_195_8_a0
A. I. Kozko; A. V. Rozhdestvenskii. On~Jackson's inequality for a~generalized modulus of continuity in~$L_2$. Sbornik. Mathematics, Tome 195 (2004) no. 8, pp. 1073-1115. http://geodesic.mathdoc.fr/item/SM_2004_195_8_a0/