On Jackson's inequality for a generalized modulus of continuity in $L_2$
Sbornik. Mathematics, Tome 195 (2004) no. 8, pp. 1073-1115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The value of the sharp constant $\varkappa$ in the Jackson type inequality in the space $L_2(\mathbb T^d)$ \begin{equation} E_{n-1}(f)\leqslant\varkappa\overline\omega_\psi(f,T) \end{equation} is studied for the generalized modulus of continuity $$ \overline\omega_\psi(f,T)=\max_{t\in T}\biggl(\sum_{s}\psi(st)|\widehat f_s|^2\biggr)^{1/2}. $$ The value $\overset{*}{\varkappa}$ of the minimum sharp constant in inequality (1) is found. A class of generalized moduli of continuity is introduced which contains the moduli $\widetilde\omega_{a,r}(f,\delta):=\sup_{0\leqslant t\leqslant\delta}\|\Delta_{a^{r-1}t}\dotsb \Delta_{at}\Delta_{t}f\|_2$, with even $a$. The relation $\varkappa=\overset{*}\varkappa$ is proved in this class for all $\delta\geqslant\pi/n$.
@article{SM_2004_195_8_a0,
     author = {A. I. Kozko and A. V. Rozhdestvenskii},
     title = {On~Jackson's inequality for a~generalized modulus of continuity in~$L_2$},
     journal = {Sbornik. Mathematics},
     pages = {1073--1115},
     year = {2004},
     volume = {195},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_8_a0/}
}
TY  - JOUR
AU  - A. I. Kozko
AU  - A. V. Rozhdestvenskii
TI  - On Jackson's inequality for a generalized modulus of continuity in $L_2$
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1073
EP  - 1115
VL  - 195
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_8_a0/
LA  - en
ID  - SM_2004_195_8_a0
ER  - 
%0 Journal Article
%A A. I. Kozko
%A A. V. Rozhdestvenskii
%T On Jackson's inequality for a generalized modulus of continuity in $L_2$
%J Sbornik. Mathematics
%D 2004
%P 1073-1115
%V 195
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2004_195_8_a0/
%G en
%F SM_2004_195_8_a0
A. I. Kozko; A. V. Rozhdestvenskii. On Jackson's inequality for a generalized modulus of continuity in $L_2$. Sbornik. Mathematics, Tome 195 (2004) no. 8, pp. 1073-1115. http://geodesic.mathdoc.fr/item/SM_2004_195_8_a0/

[1] Edvards R., Ryady Fure v sovremennom izlozhenii, t. 2, Mir, M., 1985

[2] Shapiro H. S., “A Tauberian theorem related to approximation theory”, Acta Math., 120 (1968), 279–292 | DOI | MR | Zbl

[3] Boman J., Shapiro H. S., “Comparison theorems for a generalized modulus of continuity”, Ark. Mat., 9:1 (1971), 91–116 | DOI | MR | Zbl

[4] Boman J., “Equivalence of generalized moduli of continuity”, Ark. Mat., 18:1 (1980), 73–100 | DOI | MR | Zbl

[5] Babenko A. G., “On the Jackson–Stechkin inequality for the best $L^2$-approximations of functions by trigonometric polynomials”, Proc. Math. Inst. Steklov, 2001, no. Suppl. 1, S30–S47 | MR | Zbl

[6] Prouhet M. E., “Memoire sur quelques relations entre les puissances des nombres”, C. R. Acad. Sci. Paris, 33 (1851)

[7] Thue A., “Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen”, Kra. Vidensk. Selsk. Skrifter. I. Mat.-Nat. Kl., 1912, no. 10

[8] Morse M., “Recurrent geodesics on a surface on negative curvature”, Trans. Amer. Math. Soc., 22:1 (1921), 84–100 | DOI | MR | Zbl

[9] Chernykh N. I., “O neravenstve Dzheksona v $L_2$”, Trudy MIAN, 88, 1967, 71–74 | MR

[10] Arestov V. V., Chernykh N. I., “On the $L_2$-approximation of periodic function by trigonometric polynomials”, Approximation and function spaces, Proc. Inter. Conf. (Gdansk, 1979), North-Holland, Amsterdam, 1981, 25–43 | MR

[11] Chernykh N. I., “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Matem. zametki, 2:5 (1967), 513–522 | MR

[12] Vinogradov O. L., Zhuk V. V., “Tochnye otsenki otkloneniya srednego znacheniya periodicheskoi funktsii cherez moduli nepreryvnosti vysshikh poryadkov”, Problemy matem. analiza, 2001, no. 22, 3–26 | Zbl

[13] Berdysheva E. E., “Dve vzaimosvyazannye ekstremalnye zadachi dlya tselykh funktsii mnogikh peremennykh”, Matem. zametki, 66:3 (1999), 336–350 | MR | Zbl

[14] Vasil'ev S. N., “The Jackson–Stechkin inequality in $L_2(-\pi,\pi)$”, Proc. Math. Inst. Steklov, 2001, no. Suppl. 1, S243–S253 | MR

[15] Baraboshkina N. A., “Neklassicheskie moduli nepreryvnosti i minimalnye konstanty Dzheksona–Stechkina”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tez. dokl. 11-oi Saratovskoi zimnei shkoly, posvyaschennoi pamyati vydayuschikhsya professorov MGU N. K. Bari i D. E. Menshova (Saratov, 28 yanvarya – 4 fevralya 2002 g.), Izd-vo Sarat. un-ta, Saratov, 2002

[16] Arestov V. V., Popov V. Yu., “Neravenstvo Dzheksona na sfere v $L_2$”, Izv. vuzov. Ser. matem., 1995, no. 8 (399), 13–20 | MR | Zbl

[17] Ioffe A. D., Tikhomirov V. M., “Dvoistvennost vypuklykh funktsii i ekstremalnye zadachi”, UMN, 23:6 (1968), 51–116 | MR | Zbl

[18] Shmidt V., Diofantovy priblizheniya, Mir, M., 1983 | MR

[19] Yudin A. A., Yudin V. A., “O teoremakh Dzheksona v $L^2$”, Matem. zametki, 48:4 (1990), 152–157 | MR | Zbl

[20] Kassels Dzh. V. S., Vvedenie v teoriyu diofantovykh priblizhenii, IL, M., 1961

[21] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR

[22] Zorich V. A., Matematicheskii analiz, 1, Nauka, M., 1981 | MR

[23] Lorentz G., von Golitschek M. V., Makovoz Y., Constructive approximation: advanced problems, Springer-Verlag, Berlin, 1996 | MR

[24] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[25] Gelfond A. O., “Sur les nombres qui ont des proprietes additives et multiplicatives donnees”, Acta Arith., 13 (1968), 259–265 | MR | Zbl