Birationally rigid varieties with a pencil of double Fano covers.~I
Sbornik. Mathematics, Tome 195 (2004) no. 7, pp. 1039-1071
Voir la notice de l'article provenant de la source Math-Net.Ru
The general Fano fibration $\pi\colon V\to\mathbb P^1$ the fibre of which is a double Fano hypersurface of index 1 is proved to be birationally superrigid, provided it is sufficiently twisted over the base. In particular, there exist on $V$
no other structures of a rationally convex fibration. The proof is based
on the method of maximal singularities.
@article{SM_2004_195_7_a5,
author = {A. V. Pukhlikov},
title = {Birationally rigid varieties with a pencil of double {Fano} {covers.~I}},
journal = {Sbornik. Mathematics},
pages = {1039--1071},
publisher = {mathdoc},
volume = {195},
number = {7},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2004_195_7_a5/}
}
A. V. Pukhlikov. Birationally rigid varieties with a pencil of double Fano covers.~I. Sbornik. Mathematics, Tome 195 (2004) no. 7, pp. 1039-1071. http://geodesic.mathdoc.fr/item/SM_2004_195_7_a5/