Birationally rigid varieties with a pencil of double Fano covers. I
Sbornik. Mathematics, Tome 195 (2004) no. 7, pp. 1039-1071 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The general Fano fibration $\pi\colon V\to\mathbb P^1$ the fibre of which is a double Fano hypersurface of index 1 is proved to be birationally superrigid, provided it is sufficiently twisted over the base. In particular, there exist on $V$ no other structures of a rationally convex fibration. The proof is based on the method of maximal singularities.
@article{SM_2004_195_7_a5,
     author = {A. V. Pukhlikov},
     title = {Birationally rigid varieties with a pencil of double {Fano} {covers.~I}},
     journal = {Sbornik. Mathematics},
     pages = {1039--1071},
     year = {2004},
     volume = {195},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_7_a5/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birationally rigid varieties with a pencil of double Fano covers. I
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1039
EP  - 1071
VL  - 195
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_7_a5/
LA  - en
ID  - SM_2004_195_7_a5
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birationally rigid varieties with a pencil of double Fano covers. I
%J Sbornik. Mathematics
%D 2004
%P 1039-1071
%V 195
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2004_195_7_a5/
%G en
%F SM_2004_195_7_a5
A. V. Pukhlikov. Birationally rigid varieties with a pencil of double Fano covers. I. Sbornik. Mathematics, Tome 195 (2004) no. 7, pp. 1039-1071. http://geodesic.mathdoc.fr/item/SM_2004_195_7_a5/

[1] Graber T., Harris J., Starr J., “Families of rationally connected varieties”, J. Amer. Math. Soc., 16:1 (2002), 57–67 | DOI | MR

[2] Brown G., Corti A., Zucconi F., Birational geometry of 3-fold Mori fibre spaces, Preprint, , 2003 arXiv: math.AG/0307301 | MR

[3] Pukhlikov A. V., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii s puchkom poverkhnostei del Petstso”, Izv. RAN. Ser. matem., 62:1 (1998), 123–164 | MR | Zbl

[4] Corti A., Pukhlikov A., Reid M., “Fano 3-fold hypersurfaces”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge University Press, Cambridge, 2000, 175–258 | MR | Zbl

[5] Iskovskikh V. A., Manin Yu. I., “Trekhmernye kvartiki i kontrprimery k probleme Lyurota”, Matem. sb., 86:1 (1971), 140–166 | MR | Zbl

[6] Pukhlikov A. V., “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134:2 (1998), 401–426 | DOI | MR | Zbl

[7] Pukhlikov A. V., “Biratsionalno zhestkie dvoinye giperpoverkhnosti Fano”, Matem. sb., 191:6 (2000), 101–126 | MR | Zbl

[8] Pukhlikov A. V., “Essentials of the method of maximal singularities”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge University Press, Cambridge, 2000, 73–100 | MR | Zbl

[9] Pukhlikov A. V., “Birationally rigid Fano complete intersections”, J. Reine Angew. Math., 541 (2001), 55–79 | MR | Zbl

[10] Pukhlikov A. V., “Biratsionalno zhestkie iterirovannye dvoinye nakrytiya Fano”, Izv. RAN. Ser. matem., 67:3 (2003), 139–182 | MR | Zbl

[11] Pukhlikov A. V., “Biratsionalno zhestkie rassloeniya Fano”, Izv. RAN. Ser. matem., 64 (2000), 131–150 | MR | Zbl

[12] Pukhlikov A. V., “Certain examples of birationally rigid varieties with a pencil of double quadrics”, J. Math. Sci., 94:1 (1999), 986–995 | DOI | MR | Zbl

[13] Pukhlikov A. V., “Biratsionalnye avtomorfizmy algebraicheskikh mnogoobrazii s puchkom dvoinykh kvadrik”, Matem. zametki, 67:2 (2000), 241–249 | MR | Zbl

[14] Shafarevich I. R. (red.), Algebraicheskie poverkhnosti, Sbornik trudov seminara I. R. Shafarevicha, Tr. MIAN, 75, 1965 | MR | Zbl

[15] Manin Yu. I., “Ratsionalnye poverkhnosti nad sovershennymi polyami. II”, Matem. sb., 72 (1967), 161–192 | MR | Zbl

[16] Manin Yu. I., Kubicheskie formy. Algebra, geometriya, arifmetika, Nauka, M., 1972 | MR

[17] Iskovskikh V. A., “Ratsionalnye poverkhnosti s puchkom ratsionalnykh krivykh”, Matem. sb., 74(116) (1967), 608–638 | MR | Zbl

[18] Iskovskikh V. A., “Ratsionalnye poverkhnosti s puchkom ratsionalnykh krivykh i polozhitelnym kvadratom kanonicheskogo klassa”, Matem. sb., 83(125) (1970), 90–119 | MR | Zbl

[19] Iskovskikh V. A., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii”, Itogi nauki i tekhniki. Sovrem. probl. matem., 12, VINITI, M., 1979, 159–235 | MR

[20] Sarkisov V. G., “Biratsionalnye avtomorfizmy rassloenii na koniki”, Izv. AN SSSR. Ser. matem., 44:4 (1980), 918–945 | MR | Zbl

[21] Sarkisov V. G., “O strukturakh rassloenii na koniki”, Izv. AN SSSR. Ser. matem., 46:2 (1982), 371–408 | MR | Zbl

[22] Iskovskikh V. A., “O probleme ratsionalnosti dlya trekhmernykh algebraicheskikh mnogoobrazii, rassloennykh na poverkhnosti del Petstso”, Tr. MIAN, 208, 1995, 128–138 | MR | Zbl

[23] Sobolev I. V., “Ob odnoi serii biratsionalno zhestkikh mnogoobrazii s puchkom giperpoverkhnostei Fano”, Matem. sb., 192:10 (2001), 123–130 | MR | Zbl

[24] Sobolev I. V., “Biratsionalnye avtomorfizmy odnogo klassa mnogoobrazii, rassloennykh na kubicheskie poverkhnosti”, Izv. RAN. Ser. matem., 66:1 (2002), 203–224 | MR | Zbl

[25] Grinenko M. M., “Biratsionalnye avtomorfizmy trekhmernogo dvoinogo konusa”, Matem. sb., 189:7 (1998), 37–52 | MR | Zbl

[26] Grinenko M. M., “Biratsionalnye svoistva puchkov poverkhnostei del Petstso stepeni 1 i 2”, Matem. sb., 191:5 (2000), 17–38 | MR | Zbl

[27] Grinenko M. M., “O rassloeniyakh na poverkhnosti del Petstso”, Matem. zametki, 69:4 (2001), 550–565 | MR | Zbl

[28] Iskovskikh V. A., “O kriterii ratsionalnosti dlya rassloenii na koniki”, Matem. sb., 187:7 (1996), 75–92 | MR | Zbl

[29] Corti A., “Factoring birational maps of threefolds after Sarkisov”, J. Algebraic Geom., 4:2 (1995), 223–254 | MR | Zbl

[30] Sarkisov V. G., Birational maps of standard $\mathbb Q$-Fano fibrations, Preprint, Kurchatov Institute of Atomic Energy, 1989