Birationally rigid varieties with a pencil of double Fano covers.~I
Sbornik. Mathematics, Tome 195 (2004) no. 7, pp. 1039-1071

Voir la notice de l'article provenant de la source Math-Net.Ru

The general Fano fibration $\pi\colon V\to\mathbb P^1$ the fibre of which is a double Fano hypersurface of index 1 is proved to be birationally superrigid, provided it is sufficiently twisted over the base. In particular, there exist on $V$ no other structures of a rationally convex fibration. The proof is based on the method of maximal singularities.
@article{SM_2004_195_7_a5,
     author = {A. V. Pukhlikov},
     title = {Birationally rigid varieties with a pencil of double {Fano} {covers.~I}},
     journal = {Sbornik. Mathematics},
     pages = {1039--1071},
     publisher = {mathdoc},
     volume = {195},
     number = {7},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_7_a5/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birationally rigid varieties with a pencil of double Fano covers.~I
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1039
EP  - 1071
VL  - 195
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_7_a5/
LA  - en
ID  - SM_2004_195_7_a5
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birationally rigid varieties with a pencil of double Fano covers.~I
%J Sbornik. Mathematics
%D 2004
%P 1039-1071
%V 195
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_7_a5/
%G en
%F SM_2004_195_7_a5
A. V. Pukhlikov. Birationally rigid varieties with a pencil of double Fano covers.~I. Sbornik. Mathematics, Tome 195 (2004) no. 7, pp. 1039-1071. http://geodesic.mathdoc.fr/item/SM_2004_195_7_a5/