Isotopic and continuous realizability of maps in the metastable range
Sbornik. Mathematics, Tome 195 (2004) no. 7, pp. 983-1016 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A continuous map $f$ of a compact $n$-polyhedron into an orientable piecewise linear $m$-manifold, $m-n\geqslant3$, is discretely (isotopically) realizable if it is the uniform limit of a sequence of embeddings $g_k$, $k\in\mathbb N$ (respectively, of an isotopy $g_t$, $t\in[0,\infty)$), and is continuously realizable if any embedding sufficiently close to $f$ can be included in an arbitrarily small such isotopy. It was shown by the author that for $m=2n+1$, $n\ne1$, all maps are continuously realizable, but for $m=3$, $n=6$ there are maps that are discretely realizable, but not isotopically. The first obstruction $o(f)$ to the isotopic realizability of a discretely realizable map $f$ lies in the kernel $K_f$ of the canonical epimorphism between the Steenrod and Čech $(2n-m)$-dimensional homologies of the singular set of $f$. It is known that for $m=2n$, $n\geqslant4$, this obstruction is complete and $f$ is continuously realizable if and only if the group $K_f$ is trivial. In the present paper it is established that $f$ is continuously realizable if and only if $K_f$ is trivial even in the metastable range, that is, for $m\geqslant3(n+1)/2$, $n\ne1$. The proof uses higher cohomology operations. On the other hand, for each $n\geqslant9$ a map $S^n\to\mathbb R^{2n-5}$ is constructed that is discretely realizable and has zero obstruction $o(f)$ to the isotopic realizability, but is not isotopically realizable, which fact is detected by the Steenrod square. Thus, in order to determine whether a discretely realizable map in the metastable range is isotopically realizable one cannot avoid using the complete obstruction in the group of Koschorke–Akhmet'ev bordisms.
@article{SM_2004_195_7_a3,
     author = {S. A. Melikhov},
     title = {Isotopic and continuous realizability of maps in the metastable range},
     journal = {Sbornik. Mathematics},
     pages = {983--1016},
     year = {2004},
     volume = {195},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_7_a3/}
}
TY  - JOUR
AU  - S. A. Melikhov
TI  - Isotopic and continuous realizability of maps in the metastable range
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 983
EP  - 1016
VL  - 195
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_7_a3/
LA  - en
ID  - SM_2004_195_7_a3
ER  - 
%0 Journal Article
%A S. A. Melikhov
%T Isotopic and continuous realizability of maps in the metastable range
%J Sbornik. Mathematics
%D 2004
%P 983-1016
%V 195
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2004_195_7_a3/
%G en
%F SM_2004_195_7_a3
S. A. Melikhov. Isotopic and continuous realizability of maps in the metastable range. Sbornik. Mathematics, Tome 195 (2004) no. 7, pp. 983-1016. http://geodesic.mathdoc.fr/item/SM_2004_195_7_a3/

[1] Siekłucki K., “Realization of mappings”, Fund. Math., 65:3 (1969), 325–343 | MR | Zbl

[2] Schepin E. V., Shtanko M. A., “Spektralnyi kriterii vlozhimosti kompaktov v evklidovo prostranstvo”, Trudy Leningradskoi mezhdunarodnoi topologicheskoi konferentsii, Nauka, L., 1983, 135–142

[3] Holsztyński W., “Approximation by homeomorphisms and solution of P. Blass problem on pseudo-isotopy”, Proc. Amer. Math. Soc., 27:3 (1971), 598–602 | DOI | MR | Zbl

[4] Akhmetev P. M., “Ob izotopicheskoi i diskretnoi realizatsii otobrazhenii $n$-sfery v evklidovom prostranstve”, Matem. sb., 187:7 (1996), 3–34 | MR | Zbl

[5] Keldysh L. V., “Topologicheskie vlozheniya v evklidovo prostranstvo”, Tr. MIAN, 81, 1966, 3–184

[6] Craggs R., “Small ambient isotopies of a 3-manifold which transform one embedding of a polyhedron into another”, Fund. Math., 68 (1970), 225–255 | MR

[7] Melikhov S. A., “On maps with unstable singularities”, Topology Appl., 120 (2002), 105–156 ; math.GT/0101047 | DOI | MR | Zbl

[8] Sikkema C. D., “Pseudo-isotopies of arcs and knots”, Proc. Amer. Math. Soc., 31:2 (1972), 615–616 | DOI | MR | Zbl

[9] Keldysh L. V., “Psevdoizotopiya nekotorykh lokalno-zauzlennykh prostykh dug v $E^3$”, Dokl. AN SSSR, 200:1 (1971), 21–23 | MR | Zbl

[10] Chernavskii A. V., “Lokalnaya styagivaemost gruppy gomeomorfizmov mnogoobraziya”, Matem. sb., 79:3 (1969), 307–356 | MR

[11] Edwards R. D., Kirby R. C., “Deformations of spaces of embeddings”, Ann. of Math. (2), 93:1 (1971), 63–88 | DOI | MR | Zbl

[12] Hughes B., Ranicki A., Ends of complexes, Cambridge Tracts in Math., 123, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl

[13] Quinn F., “Homotopically stratified sets”, J. Amer. Math. Soc., 1 (1988), 441–499 | DOI | MR | Zbl

[14] Akhmetev P. M., Melikhov S. A., “Ob izotopicheskoi realizuemosti nepreryvnykh otobrazhenii”, Zapiski nauch. sem. POMI, 267, 2000, 53–87 ; “Исправление” (в печати); J. Math. Sci. (New York), 113 (2003), 759–776 | MR | Zbl | DOI

[15] Akhmetiev P. M., “Pontryagin–Thom construction for approximation of mappings by embeddings”, Topology Appl., 140:2–3 (2004), 133–149 | DOI | MR | Zbl

[16] Kharlap A. E., “Lokalnye gomologii i kogomologii, gomologicheskaya razmernost i obobschennye mnogoobraziya”, Matem. sb., 96:3 (1975), 347–373 | MR | Zbl

[17] Repovsh D., Skopenkov A. B., “Novye rezultaty o vlozheniyakh poliedrov i mnogoobrazii v evklidovy prostranstva”, UMN, 54:6 (1999), 61–108 | MR | Zbl

[18] Repovš D., Skopenkov A. B., “A deleted product criterion for approximability of maps by embeddings”, Topology Appl., 87 (1998), 1–19 | DOI | MR | Zbl

[19] Conner P. E., Floyd E. E., “Fixed point free involutions and equivariant maps”, Bull. Amer. Math. Soc. (N.S.), 66:6 (1960), 416–441 | DOI | MR | Zbl

[20] Bredon G. E., Equivariant cohomology theories, Springer-Verlag, Berlin, 1967 | MR | Zbl

[21] Stinrod N., Epstein D., Kogomologicheskie operatsii, Nauka, M., 1983 | MR

[22] Stinrod N., “Kogomologicheskie operatsii i prepyatstviya k prodolzheniyu nepreryvnykh otobrazhenii”, Matematika. Sb. per., 2:6 (1958), 11–48

[23] Khilton P., Uaili S., Teoriya gomologii, Mir, M., 1966

[24] Massi U., Teoriya gomologii i kogomologii, Mir, M., 1981 | MR

[25] Adem J., “The iteration of the Steenrod squares in algebraic topology”, Proc. Natl. Acad. Sci. USA, 38:8 (1952), 720–726 | DOI | MR | Zbl

[26] Bredon G., Teoriya puchkov, Nauka, M., 1988 | MR | Zbl

[27] Braun K. S., Kogomologii grupp, Nauka, M., 1987 | MR

[28] Spener E., Algebraicheskaya topologiya, Mir, M., 1971 | MR | Zbl

[29] Ferry S., “Remarks on Steenrod homology”, Novikov conjecture, index theorems and rigidity, London Math. Soc. Lecture Note Ser., 2, eds. S. Ferry et al., Cambridge Univ. Press, Cambridge, 1995, 149–166 | MR

[30] Sklyarenko E. G., “K teorii gomologii, assotsiirovannoi s kogomologiyami Aleksandrova–Chekha”, UMN, 34:6 (1979), 90–118 | MR | Zbl

[31] Edwards D. A., Hastings H. M., Čech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Math., 542, Springer-Verlag, Berlin, 1976 | MR | Zbl

[32] Fuks L., Beskonechnye abelevy gruppy, 1, Mir, M., 1974

[33] Dranishnikov A. N., Repovš D., Ščepin E. V., “Dimension of products with continua”, Topology Proc., 18 (1993), 57–73 | MR | Zbl

[34] Kuzminov V., “O proizvodnykh funktorakh funktora proektivnogo predela”, Sib. matem. zhurn., 8:3 (1967), 333–345 | MR | Zbl

[35] Maklein S., Gomologiya, Mir, M., 1966