Extensions of $C^*$-algebras by partial isometries
Sbornik. Mathematics, Tome 195 (2004) no. 7, pp. 951-982 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The structure of the $C^*$-algebra generated by a $*$-algebra $\mathscr A$ and a partial isometry inducing an endomorphism of $\mathscr A$ is investigated.
@article{SM_2004_195_7_a2,
     author = {A. V. Lebedev and A. Odzijewicz},
     title = {Extensions of $C^*$-algebras by partial isometries},
     journal = {Sbornik. Mathematics},
     pages = {951--982},
     year = {2004},
     volume = {195},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_7_a2/}
}
TY  - JOUR
AU  - A. V. Lebedev
AU  - A. Odzijewicz
TI  - Extensions of $C^*$-algebras by partial isometries
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 951
EP  - 982
VL  - 195
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_7_a2/
LA  - en
ID  - SM_2004_195_7_a2
ER  - 
%0 Journal Article
%A A. V. Lebedev
%A A. Odzijewicz
%T Extensions of $C^*$-algebras by partial isometries
%J Sbornik. Mathematics
%D 2004
%P 951-982
%V 195
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2004_195_7_a2/
%G en
%F SM_2004_195_7_a2
A. V. Lebedev; A. Odzijewicz. Extensions of $C^*$-algebras by partial isometries. Sbornik. Mathematics, Tome 195 (2004) no. 7, pp. 951-982. http://geodesic.mathdoc.fr/item/SM_2004_195_7_a2/

[1] Davidson K. R., $C^*$-algebras by example, Fields Inst. Monogr., 6, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[2] Pedersen G. K., $C^*$-algebras and their automorphism groups, Academic Press, New York, 1979 | MR | Zbl

[3] Antonevich A., Lebedev A., Functional differential equations: I. $C^*$-theory, Longman, Harlow, 1994 | Zbl

[4] Antonevich A., Belousov M., Lebedev A., Functional differential equations: II. $C^*$-applications. Part 1: Equations with continuous coefficients, Longman, Harlow, 1998 | MR

[5] Antonevich A., Belousov M., Lebedev A., Functional differential equations: II. $C^*$-applications. Part 2: Equations with discontinuous coefficients and boundary value problems, Longman, Harlow, 1998 | MR

[6] Ostrovskyi V., Samoilenko Yu., Introduction to the theory of representations of finitely presented $*$-algebras. I. Representations by bounded operators, Harwood Acad. Publ., Amsterdam, 1999 | MR

[7] Odzijewicz A., Horowski M., Tereszkiewicz A., “Integrable multi-boson systems and orthogonal polynomials”, J. Phys. A, 34 (2001), 4353–4376 | DOI | MR | Zbl

[8] Horowski M., Odzijewicz A., Tereszkiewicz A., Some integrable systems in nonlinear quantum optics, , 2002 arXiv:math-ph/0207031

[9] Boyd S., Keswani N., Raeburn I., “Faithful representations of crossed products by endomorphisms”, Proc. Amer. Math. Soc., 118:2 (1993), 427–436 | DOI | MR | Zbl

[10] Adji S., Laca M., Nilsen M., Raeburn I., “Crossed products by semigroups of endomorphisms and the Toeplitz algebras of ordered groups”, Proc. Amer. Math. Soc., 122:4 (1994), 1133–1141 | DOI | MR | Zbl

[11] Exel R., “Circle actions on $C^*$-algebras, partial automorhisms and generalized Pimsner–Voiculescu exact sequence”, J. Funct. Anal., 122 (1994), 361–401 | DOI | MR | Zbl

[12] McClanachan K., “$K$-theory for partial crossed products by discrete groups”, J. Funct. Anal., 130 (1995), 77–117 | DOI | MR

[13] Sieben N., “$C^*$-crossed products by partial actions and actions of inverse semigroups”, J. Austral. Math. Soc. Ser. A, 63 (1997), 32–46 | DOI | MR | Zbl

[14] Paterson Alan L. T., Groupoids, inverse semigroups, and their operator algebras, Progr. Math., 170, Birhäuser, Boston, MA, 1999 | MR | Zbl

[15] Lebedev A., Odzijewicz A., On the structure of $C^*$-algebras generated by the components of polar decomposition, , 2002 arXiv:math.OA/0208200 | MR

[16] Khalmosh P. R., Gilbertovo prostranstvo v zadachakh, Mir, M., 1970 | MR | Zbl

[17] Exel R., “Amenability for Fell bundles”, J. Reine Angew. Math., 492 (1997), 41–73 | MR | Zbl

[18] Antonevich A. B., Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Izd-vo Universitetskoe, Minsk, 1988 | MR | Zbl

[19] Brenner V. V., “O spektralnom radiuse operatorov s lokalno nezavisimymi sdvigami”, Izv. AN BSSR, 1981, no. 3, 48–85 | MR

[20] Brenner V. V., Operatory s lokalno nezavisimymi sdvigami, Dis. ... kand. fiz.-matem. nauk, Minsk, 1981

[21] Brenner V. V., “O spektralnom radiuse operatorov so sdvigom”, UMN, 37:1 (1982), 139–140 | MR | Zbl

[22] Brenner V. V., O simvolicheskikh posledovatelnostyakh. I, Dep. v VINITI, No 4399-83, 1983

[23] Brenner V. V., O simvolicheskikh posledovatelnostyakh. II, Dep. v VINITI, No 4400-83, 1983 | MR

[24] Antonevich A. B., “O dvukh metodakh issledovaniya obratimosti operatorov v $C^*$-algebrakh, indutsirovannykh dinamicheskimi sistemami”, Matem. sb., 124 (166):1 (1984), 3–23 | MR | Zbl

[25] Beurling A., “Sur les intégrales de Fourier absolument convergentes et leur application a une transformation fonctionnelle”, IX Congr. Math. Scand., 1938, 345–366 | Zbl

[26] O'Donovan D. P., “Weighted shifts and covariance algebras”, Trans. Amer. Math. Soc., 208 (1975), 1–25 | DOI | MR | Zbl

[27] Lebedev A. V., O nekotorykh $C^*$-metodakh, ispolzuemykh pri issledovanii algebr, assotsiirovannykh s avtomorfizmami i endomorfizmami, Dep. v VINITI, No 5351-B87, 1987

[28] Maximov V., Odzijewicz A., “The $q$-deformation of quantum mechanics of one degree of freedom”, J. Math. Phys., 36:4 (1995), 1681–1690 | DOI | MR | Zbl

[29] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl

[30] Odzijewicz A., “Quantum algebras and $q$-special functions related to coherent states maps of the disc”, Commun. Math. Phys., 192 (1998), 183–215 | DOI | MR | Zbl