Poincaré map for some polynomial systems of differential equations
Sbornik. Mathematics, Tome 195 (2004) no. 7, pp. 917-934 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One approach to the classical problem of distinguishing between a centre and a focus for a system of differential equations with polynomial right-hand sides in the plane is discussed. For a broad class of such systems necessary and sufficient conditions for a centre are expressed in terms of equations in variations of higher order. By contrast with the existing methods of investigation, attention is concentrated on the explicit calculation of the asymptotic behaviour of the Poincaré map rather than on finding sufficient centre conditions as such; this also enables one to study bifurcations of birth of arbitrarily strongly degenerate cycles.
@article{SM_2004_195_7_a0,
     author = {V. P. Varin},
     title = {Poincar\'e map for some polynomial systems of~differential equations},
     journal = {Sbornik. Mathematics},
     pages = {917--934},
     year = {2004},
     volume = {195},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_7_a0/}
}
TY  - JOUR
AU  - V. P. Varin
TI  - Poincaré map for some polynomial systems of differential equations
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 917
EP  - 934
VL  - 195
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_7_a0/
LA  - en
ID  - SM_2004_195_7_a0
ER  - 
%0 Journal Article
%A V. P. Varin
%T Poincaré map for some polynomial systems of differential equations
%J Sbornik. Mathematics
%D 2004
%P 917-934
%V 195
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2004_195_7_a0/
%G en
%F SM_2004_195_7_a0
V. P. Varin. Poincaré map for some polynomial systems of differential equations. Sbornik. Mathematics, Tome 195 (2004) no. 7, pp. 917-934. http://geodesic.mathdoc.fr/item/SM_2004_195_7_a0/

[1] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979 | MR

[2] Medvedeva N. B., “Glavnyi chlen asimptotiki preobrazovaniya monodromii”, Sib. matem. zhurn., 38:1 (1997), 135–150 | MR | Zbl

[3] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya”, Itogi nauki i tekhniki. Ser. Sovrem. probl. mat. Fundam. napravleniya, 1, VINITI, M., 1985, 7–140 | MR

[4] Bryuno A. D., Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Fizmatlit, M., 1998 | MR | Zbl

[5] Lyapunov A. M., “Issledovanie odnogo iz osobennykh sluchaev zadachi ob ustoichivosti dvizheniya”, Sobr. soch., t. 2, ONTI, M.–L., 1956, 272–331

[6] Varin V. P., Problema tsentra-fokusa i uravneniya v variatsiyakh, Preprint No 9, Institut prikl. matem. im. M. V. Keldysha, M., 2001

[7] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Gostekhizdat, M.–L., 1949

[8] Varin V. P., “Degeneracies of periodic solutions to the Beletsky equation”, Regul. Chaotic Dyn., 5:3 (2000), 313–328 | DOI | MR | Zbl

[9] Ilyashenko Yu. S., “Algebraicheskaya nerazreshimost i pochti algebraicheskaya razreshimost problemy tsentr-fokus”, Funkts. analiz i ego prilozh., 6:3 (1972), 30–37 | MR | Zbl

[10] Van-der-Varden B. L., Sovremennaya algebra, ch. 2, ONTI, M.–L., 1947

[11] Sadovskii A. P., “O probleme razlicheniya tsentra i fokusa dlya sistem s nenulevoi lineinoi chastyu”, Differents. uravneniya, 12:7 (1976), 1238–1246 | MR | Zbl

[12] Schlomiuk D., “Algebraic and geometric aspects of the theory of polynomial vector fields”, Bifurcations and periodic orbits of vector fields, Kluwer Acad. Publ. Netherlands, 1993, 429–467 | MR | Zbl

[13] Edneral V. F., “Computer evaluation of cyclicity in planar cubic system”, Proceedings of the ISSAC'97, ed. W. Küchlin, ACM, N. Y., 1997, 305–309 | MR | Zbl

[14] Varin V. P., Usloviya tsentra dlya sistem, blizkikh k gamiltonovym, Preprint No 48, Institut prikl. matem. im. M. V. Keldysha, M., 2001